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Abstract

Let ^ # be a von Neumann algebra with a faithful normal trace r, and let Wx be a finite, maximal,
subdiagonal algebra of ^ . We prove that the Hilbert transform associated with //*• is a linear continuous
map from V (.M, r) into Llx(^f, r). This provides a non-commutative version of a classical theorem
of Kolmogorov on weak type boundedness of the Hilbert transform. We also show that if a positive
measurable operator b is such that b log+ b e V (^#, r) then its conjugate b, relative to //*• belongs to
Z.'(^#, r). These results generalize classical facts from function algebra theory to a non-commutative
setting.
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1. Introduction

The theory of conjugate functions has been a strong motivating force behind various
aspects of harmonic analysis and abstract analytic function spaces. This theory
which was originally developed for functions in the circle group T has found many
generalizations to more abstract settings of function algebras such as Dirichlet algebras
in [6] and weak*-Dirichlet algebras in [15]. Results from this theory have been proven
to be very fruitful for studying Banach space properties of the Hardy spaces (and their
relatives) associated with the algebra involved (see for instance [3] and [17]).

The notion of conjugate operators, Hilbert transforms along with Riesz projections
for non-commutative settings have been considered by several authors. For instance,
one can find implicitly in a paper of Zsido [30] that for 1 < p < oo, the Hilbert
transform is a bounded linear map on non-commutative Lp associated with a general
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[2] Hilbert transform for finite algebras 389

semifinite von Neumann algebra. Zsido's approach was to study representations of
locally compact groups of operators. The same line of ideas were used by Berkson et
al [13] and Asmar et al [2] to obtain some versions of Riesz projection boundedness
for the case 1 < p < ex. Very recently Dodds et al [11] also considered Riesz
projection for the case of symmetric spaces of measurable operators affiliated with
semifinite von Neumann algebras.

The main purpose of the present paper is to investigate the Hilbert transform for
the case p = 1. It is well known that the classical Hilbert transform is of weak type
1-1 that is a continuous linear map from L'(T) into the space L|OC(T). This can
be obtained from the so called Kolmogorov inequality. This result was proved to be
valid for the case of weak*-Dirichlet algebra by Hirschman and Rochberg [15]. A
question that arises naturally from these facts is whether or not a non-commutative
analogue of Kolmogorov's theorem is valid. Let ^ be a von Neumann algebra with a
faithful, normal finite trace r. Arveson [1] introduced, as non-commutative analogues
of weak*-Dirichlet algebras, the notion of finite, maximal subdiagonal algebras of M
(see definition below). Subsequently several authors studied the (non-commutative)
A/''-spaces associated with such algebras (see for instance, [16,20,22,24,25]).

We prove that most fundamental theorems on conjugate operation on Hardy spaces
associated with weak* -Dirichlet (see [6] and [15]) remain valid for Hardy spaces
associated with finite subdiagonal algebras. In particular, we show that the conjugation
operator is a continuous linear map from L](^, r ) into L l o o (^# , x). This allows us
to conclude that, as in the commutative case, the Hilbert transform is bounded from
V(JK, x) i n to Lp(J?, x)forO<p< 1.

We refer to [23,26] and [27] for general information concerning von Neumann
algebras as well as basic notions of non-commutative integration, to [7] and [19] for
Banach space theory and to [14] and [31] for basic definitions from harmonic analysis.

2. Definitions and some preliminary results

Throughout, H will denote a Hilbert space and M c jSf (//) a von Neumann
algebra with a normal, faithful finite trace r . A closed densely defined operator a
in H is said to be affiliated with M if u*au = a for all unitary operators u in the
commutant J(' of ^# . If a is a densely defined self-adjoint operator on H, and
if a = f^ sde" is its spectral decomposition, then for any Borel subset B c R,
we denote by XB(Q) the corresponding spectral projection f™x XB(s)de". A closed
densely defined operator a on H affiliated with JM is said to be x-measurable if there
exists a number s > 0 such that x(xu.x)(\a\)) < ex.

The set of all x -measurable operators will be denoted by Jt'. The set ^ # is a
*-algebra with respect to the strong sum, the strong product, and the adjoint operation
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[23]. For x e ^ , the generalized singular value function ix(x) of x is defined by

H,(x) = inf{s > 0 : T(X(S.OC)(\X\)) < t}, for t > 0.

The function t —> fi,(x) from (0, r ( / ) ) to [0, oo) is right continuous, non-increasing
and is the inverse of the distribution function k(x), where ks(x) = t(Xis.x)(\x\)), for
s > 0. For some basic properties of [i(.) and A(.), we refer to [12]; some additional
properties can be found in [8] and [10]. Using the generalized singular value function,
one can construct a non-commutative version of a given function space as follows.

DEFINITION 1. Let E be an order continuous rearrangement invariant (quasi-) Ba-
nach function space on (0, r ( / ) ) . We define the symmetric space E{M', r) of mea-
surable operators by setting:

E(Jt, r) = {x e 3# : fi(x) e E) and

€ £(.#, r).

It is well known that E{J?, r ) is a Banach space (respectively, quasi-Banach space)
if E is a Banach space (respectively, quasi-Banach space), and that if E = Lp(0, r ( / ) ) ,
for 0 < p < oo, then E{M', r ) coincides with the usual non-commutative L''-space
associated with (JV, x). We refer to [4,8] and [28] for more detailed discussions about
these spaces. For simplicity we will always assume that the trace r is normalized.

The next definition isolates the main topic of this paper.

DEFINITION 2. Let Hx be a weak*-closed unital subalgebra of J( and let <t> be a
faithful, normal expectation from M onto the diagonal D = Hx D (H^)*, where
(H°°)* = [x*, x e Hx}. Then H°° is called a finite, maximal, subdiagonal algebra
in ^K with respect to <t> and r if:

(1) Hx + (Hx)* is weak*-dense in Jt\
(2) <b(ab) = 4>(a)<D(fc) for all a, b e Hx;
(3) Hx is maximal among those subalgebras satisfying (1) and (2);
(4) r o <t> = r .

For 0 < p < oo, the closure of Hx in Lp(Jt, r ) is denoted by HP(J?, r ) (or
simply Hp) and is called the Hardy space associated with the subdiagonal algebra
H°°. Similarly, the closure of //0°° = {x e Hx\ O(JC) = 0} is denoted by //o

p. These
non-commutative Hardy spaces were first considered by Arverson [ 1 ] and have been
studied by several authors.

Note that the conditional expectation <i> extends to L2(^#, r) and this extension is
an orthogonal projection from L2(^#, r) onto [D]2, the closure of D in L2(M', r ) .
Similarly, since ||<J>Qc)||i < ||JC||I for every x e M', the operator <i> extends uniquely
to a projection of norm one from L ' (^# , r ) onto [D]i, the closure of D in L ' (^#, r) .
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Let srf — H^ + (H00)*. Since &/ is weak*-dense in ^#, it is norm dense in
U(J{, r), where 1 < p < DO.

Note that H^ and (H^)* are orthogonal in L2(^#, T). This fact implies that
L2(J{, T) = H2® (H2)*, and hence that L2(Jt, r) = H2 ® (H2)* © [D]2.

Let a 6 &/. Then a can be written as at + a* + d where at and a2 belong to H^
and d e D. In fact, a = /?, + ft? with bub2€ Hx and set d = $(£ , ) + <J>(fe*) <= D
and a, = £>, — O(^ ) , for / = 1, 2.

Since H^ and {H^)* are orthogonal subsets of L 2 ( . # , r ) , this decomposition is
unique.

DEFINITION 3. For u = H , + u*2 + d in s/ , we define the conjugate of M by setting
u = iu* — iu\.

It is clear that for every u € ^/ , the operator u e ^ # and M + /'M = 2M I + i/ e Z/30.
The Hilbert transform (conjugation operator) Jf? can now be defined as a map on srf
as follows: jtf1 : stf —>• . # (w -> J f (M) = M). For more general setting of conjugate
operators and Hilbert transform, we refer to [30]. It should be noted that if ^ # is
commutative, then the above definition coincides with the definition of conjugate
functions for weak*-Dirichlet algebras studied in [15].

REMARKS 1. (i) If u = «*, then the uniqueness of the decomposition implies
that «i = u2 and d = d*. Therefore if u = u* then u = u*.

(ii) For u = u\ + u*2 + d e &/ and u = i(u% — U\), the above observation implies
that u*2 L «| in L2(M', r ) . so

and since /.-(.#, r) = H2 © (H2)* © [D]2 we get,

\\u\\\ = \\ux\\\+\\u\\\\+\\d\\\,

which implies that ||M||2 < HM||:

As a consequence of (ii). it is clear that Jf can be extended as a bounded map of
norm one on L2(^', r ) . In fact the following more general result can be deduced
from [30]:

THEOREM 1. For each 1 < p < oo, there is a unique continuous linear extension of
Jf(which is also denoted by 3tf') from L''(^#, r) into L''(^#, r) with the property that
f + if e H1' for all f 6 V'{^,', r). Moreover there is a constant Cp = 8 max(p, q)
such that

ll/ll, < Cp\\f\\p for all f € V\Jt, r) and \/p +\/q = \.
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We present a short discussion on how the constant Cp is obtained. For k e N and
p = 2k, the above theorem can be easily obtained from [30, Lemma 4.1] replacing
L2k(p)u~(E/(—E)) by H2k; all the assumptions on [30] would be satisfied by our
setting.

Let f = f* € &/; from Remarks 1, / = u + u* + d = (w + d/2) + (u + d/2)*
for some u e H^ and d e D so from [30, Lemma 4.1 ], we get

So for / e stf (not necessarily self-adjoint),

ll/lb < 8*11/11;.*.

Since si is dense in L2k(M', r ) , the inequality above shows that Jf? can be extended
as a bounded linear operator from L2k{^, r ) into Llk(jy. r ) with \\Jff\\ < 8£; so the
theorem is proved for p even.

For the general case, let 2 < p < oo. Choose an integer it such that 2k < p <
2k + 2. By [9, Theorem 2.3], Lp(^, r ) can be realized as a complex interpolation
of the pair of Banach spaces (L2A(^#, r ) , L2k+2(^, T ) ) . and we conclude that Jf? is
also bounded from LP{J(, r ) intoL' '(^#, r) with | | J f || < (8it)w(8it-)-8)1-w for some
0 < 6 < 1. Therefore \\Jf \\ < (8it + 8) < 8p. So the theorem is verified for 2 < p.

For 1 < p < 2, from the above case, Jif is bounded from Lq(^, r) into Lq(J(, r ) ,
where 1/p + 1/iy = 1, and as in the commutative case. (.Jf)* = —Jf and hence
\\Jf\\ < 8q. In fact, let M and i> be self-adjoint elements of g&\ we have

iv)) = <t>(« + iu)4>(v + iv) =

which implies that

<£>(wt; + i«u + iuv — uv) = <t>(uv — uv) + i<t>(uv + uv) =

so

T(UV - uv) + ix{uv + uv) =

Since <J>(M) and 4>(u) are self-adjoint, r(<t>(u)<$>(v)) e K. and also x(uv — uv) and
r(wu + uv) € K. This implies x(uv + uv) — 0 and r(uv) = -r(uv). •

REMARKS 2. (i) The above theorem yields that, as in [ 15, Corollary 2h], there
exists a constant M such that if 1 < p < oo and \/p + \/q = 1, then UMII,, <
A/pgHwII,, forallw e LP{J?,T).

(ii) After this paper was written, we also learned that Marsalli and West [21,
Theorem 5.5] also considered the Riesz projection for the setting of this paper and
provided a direct proof for the above theorem.
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We finish this section by collecting a few lemmas that are necessary for the proof
of our main result. The first lemma is just a notational adjustment of [15, Theorem 3a]
so we will not present its proof.

LEMMA 1. For u e .//, let f = u + iu and 0 < e < 1. The formal series
<p(t) = 5I^l()f*£*/*/&! 'v absolutely convergent in / / ' for every t < l/eM\\\u\\
where M, = 2M + 2 and M is the constant from Remarks 1 (i) above.

LEMMA 2. For u e . # , u > 0, let f = u + iu and 0 < e < 1. Then I + sf has
bounded inverse with ||(/ + sf)~]1| < 1 and f = (el + / ) ( / + e/)"1 e Hx.

PROOF. Note that / is densely defined and that, for every x € D(f),

((/ + ef)x, x) = ((/ + eu)x, x) + i{ux, x).

Thus |((/ +ef)x, x)\ > \\x\\2, which implies ||(/ +e / )x | | > ||x|| for all x e D(f).
So / + ef has bounded inverse with ||(/ + e/)"11| < 1.

For the second part, note first that ff is bounded. In fact, fe = e(/ + e / ) " ' + / ( / +
e/)- ' ;but/ = (/ + £ / ) ( /+£ / ) - ' = ( / + £ / ) " ' + £ / ( / + £ / ) - ' and ( / + £ / ) - ' € ^#,
so the operator sf(I + sf) ' is bounded, implying / ( / + £/)"' is bounded. To prove
that f € //*•, it suffices to show that (/ + e/)"' e Hx.

Set A = —sf. There exists a (unique) semi-group of contractions (T,)l>0 such that
A is the infinitesimal generator of (7,),>0 (see for instance [29, p. 246-249]). It is
well known that

(/ - A)"'.v = / e~'T,x dt for all A: <= H and
Jo

T,x = lim exp(rA(/ -n-lAy])x for all x e //.

It is claimed that T, € H^ for every f > 0.
Since (7",),>0 is a semi-group and H^ is a subalgebra, it is enough to verify this

claim for small values of t. Assume that It < 1/eMi \\u\\. Let (p(t) be the operator in
Hl defined in Lemma 1. We will show that T, = <p(t). Using the series expansion of
the exponential and Lemma 1, we get

tk

- n~] Ay1) - Ak\
k>o

Fix A: > Oand set for every n > 1, J,, = (/ — n~l A)~].

UAJn)
k-Ak\U = \\Ak(J,,)k-Akh < IIA
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Since J,,x—x = n ~' J,, Ax for every x e D(A) (see for instance [29, p. 246]) , one can

conc lude that \\Jn — I\\\ converges to zero. Similarily, \\(J,,)k — I\\2 converges to zero

which impl ies that Mm(tk/k\)\\ (A(I - n~] A)~]) - A A | | ! = 0 so by the est imate on
n—>oc

the series above,

l im | | e x p ( / A ( / - « ~ ' A ) - I ) - < p ( r ) | | , = 0
n-»cc

which shows that T, = <p(t) e / / ' and since T, is bounded, the claim follows.
We conclude the proof by noticing that t —• T, is a continuous function in / / '

which shows that ( / - A ) " 1 € / / ' . •

LEMMA 3. (1)

(2) Re(/f) >£ / .
(3) Re (/ + (/, - 5 / ) ( / £ + s / ) - ' ) > 0 for every s > 0.
(4) l i m M 0 | | / £ - / | | , , = 0 1 < / > < o o .

PROOF. (1) / f e H^ and / f ( / + e/) = el + f e //2 , so 4>(/f)O(/ +
d>(£/ + / ) . But <S>(f) = <D(M), SO we get <D(/f)(/ + e<i>(n)) = sl +

(2) From the definition of fe,

Re(/£) = R

= Re ([(£/ + e2/) + (1 - £2)f)](I + £/)*')
= £/ + (l - £ 2 ) R e ( / ( / + £ / r ! ) .

Since we assume that £ < 1, it is enough to show that Re (/( / + e/)"1) > 0.

Re ( / ( / + £ / ) " ' )

= i(/ + £/*)"' (2 Re (/) 4- 2£|/|2) (/ + £/)-'

>0.

(3) As above,

Re(/ + (/f-s/)(/£+s/r')

\ ( /e + sir1 + (/; + */)-'(/; -

e - si)

) - 1

sir1 (\f£\
2 - s2i) (je + si

- s
2/) (/f + sir

Re /,) (/, + sir1,
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and the claim follows from the fact that Re (/F) > si.

(4) We have for every e > 0,

/ , - / = (£/ + /)(/+£/)"'-/

= ((el + /) - /(/ + e/)) (/ + £/)-'

= £(I + f2)(I +£/)"',

SO

fi,(fe ~ f) « £1^,(1 + / 2 )M,((/ + £/)"')•

Since | |(/ + e/V'l l < 1, we get / / , (( / + e/)"1) < 1 for every t > 0. Also
I + f2 € LP{JK,T) for every p > 1, so | |/e - / | | p £ e | | / + / 2 | | P - • 0 (as e ->• 0).
The proof is complete. •

LEMMA 4. Let a and b be operators in M with a > 0, b > 0, and let P be a
projection that commutes with a. Then x(ab) > T(P(ab)P).

PROOF. TO see this, notice that, since P commutes with a, PaP < a, so bl/2PaP
b>/2 < b]/2ab]/2, implying that T(b]/2PaPb]/2) < z(bl/2abi/2) and

z(P(ab)P) = T(P(ab))

= z(PaPb) = r(bl/2PaPbl/2)

< T(bu2abU2) = z(ab).

The lemma is proved. •

LEMMA 5. Let S be a positive operator that commutes with | / f | then

r(5Re(/e)) < r (S | / f | ) .

PROOF. Let S > 0 and assume that 5| /£ | = | / £ | 5 . we have

< \r(Sfe)\

Let fc = u\fe\ be the polar decomposition of fc. Since S commutes with | /£ | ,
we get | r (5/ £ ) | = | r (« | / f |S ) | = | T ( M 5 ' / 2 | / E | 5 ' / 2 ) | < r (S | / e | ) . Thus the proof is
complete. •
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LEMMA 6. Let A and B be positive operators in ^ such that:

(i) A"1 and B'"' exists in Jf;
(ii) z{CA) < x(CB)for every C that commutes with B;

then for every C that commutes with B, z(CB~[) < r (CA" ' )

PROOF. Observe that r (CB" ' ) = r{aB), where a = Cl/2B~]Ai/2 and B =
A-i/2Ci/2 B y Holder's inequality,

') < r ( |a | 2 ) ' / 2 r ( | ,6 | 2 ) 1 / 2 = r(a*a)]/2 r(B*B)] 2 = z(aa*)]l2x(B*B)l/2

= r (C1 / 2 f i - 'A1 / 2Al / 2 f i - 'C1 / 2 )1 / 2 r (Cl / 2A^' : A- ' / 2 C l / 2 ) 1 / 2

= r ( C 1 / 2 B - ' A S - | C l / 2 ) 1 / 2 r ( C A - | ) l / 2

Since C commutes with fi, the operator B~^CB] commutes with B so we get by
assumption that T ( 5 " ' C B " ' ( A ) ) < r ( B " ' C B - ' ( 5 ) ) , and therefore

) < r ( C f i ' 1 ) ' / 2 r ( C A - | ) l / 2

which shows that r (CB" ' ) < r (CA" ' ) . The proof of the lemma is complete. •

3. Non-commutative variant of Kolmogorov Theorem

In this section, our main goal is to present the proof of the inequality that will lead
us to the Kolmogorov Theorem, that is the Hilbert transform for the case p = 1.

THEOREM 2. Let u e ^ # with u > 0, and set f = u + iu. Then for every s > 0,

PROOF. Our proof follows the presentation of Helson in [14] for the commutative
case.

Let u and / be as in the statement of the Theorem 2, and fix 0 < s < 1. Set
ft as in Lemma 2. For 5 € (0, oo) fixed, consider the following transformation on
{z:Re(z) > 0}:

As(z) = 1 + - — - for all z € {w : Re (w) > 0}.
z + s

It can be checked that the part of the plane {z : \z\ > s] is mapped to the half disk
{w : Re(u0 > 1}; this fact is very crucial in the argument of [14] for the commutative
case.

https://doi.org/10.1017/S1446788700035953 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035953


[10] Hilbert transform for finite algebras 397

Note that o(fe) is a compact subset of {z : Re (z) > s}. By the analytic functional
calculus for Banach algebras,

As(ft) = I + (fe-sI)(fE+sI)-] e Hx

and therefore (since As is analytic)

(3-D <f>(/U/f)) = A,(<J>(/e)) = As(d>(M)£).

Note that since <P(u) is self-adjoint, so are <t>(u)c and A5(4>(M)£) . We conclude
from (3.1) that T (/ + (0(«) f - 5 / ) ( 4 > ( M ) £ + .? / ) - 1 ) € K, and therefore

(3.2) r (Re(/ + (/£ - sl){fe + siy])) = r(

Set P = X(.i.5c)(l/f I)- The projection P commutes with | / £ | and we have

Re [/ + (/, - sl){ff + si)'1] = ( / ; + sir' [2\fA2 + 2s Re (/,)] (fe + sir1;

but since Re (/f) > si > 0, we get

and hence

(3.3) r [Re (/ + (/, - .s7)(/£ + 5/)"1)] > r [2| /E | 2( /£ + * / ) - ' ( / ; + si)1].

Applying Lemma 4 fora = 2\fc\ and b = (fe + sl)~l(f* + sl)~], we obtain

(3.4) z[Red + (fe -si)(/e + sir])] > T[2P\fe\
2(L + siy](f; + sir1].

Note that (/c + s/)- |(/; +*/)"' = (|/f I
2 + 2s Re(/E) + s2iy\

Set

A = (/; + sl)(fe + si) = | /£ |2 + 2s Re (/,) + s2l,

B = \fc\
2+2s\fE\+s2I.

It follows from Lemma 5 that if C is a positive operator that commutes with B then
z(CA) < z(CB).

Applying Lemma 6 to A, B and C = 2 P | / £ | 2 (since P commutes with | / £ | , the
operator C commutes with B), we obtain from (3.4) that

r [Re (/ + (/f - * / ) ( / , + * / ) - ' ) ] > T ( C A - ' ) > T ( C B - ' )
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398 Narcisse Randrianantoanina [11]

and hence

( 3 . 5 ) r [ R e ( / + (fe - sl)(fe + s i y 1 ) ] > x [2P\fe\
2(\fA2 + s\ft\ + s 2 l ) ] ] .

If we denote by ElfA the spectral decomposition of \ft |, then

-F 2t2

/, r- + ist + s2

Let

It2

t2
f o r ' € [s<oo)-

One can show that ^r, is increasing on [5, 00) so x/fs(t) > 1/̂ ,(5-) = ^ for / > 5, and
therefore

so we deduce from (3.5) that

r [Re (/ + (/e - */)(/, + s/)-1)] > ir(/>).

To finish the proof, recall from (3.2) that

r [Re (/ + (/, - sl)(fe + siy1)] = r [/ + (<D(M)f - s/)(O(M)e + siy]],

so

x(P) < 2T [/ + (*(ii)e - i/)(4>(«)£ + 5/)"1] = 2T

But (4>(M)£ + 5 / ) " 1 = 5 - ' ( ± 7 k + / ) " ' has norm < 1/s, hence

Now taking e ->• 0, we get from Lemma 3 (6) that ||«f |h -> ||w||| and ||/f - / | | ,
converges to zero. In particular, (fe) converges to / in measure. We obtain from [12,
Lemma 3.4] that fi,(f) < liminf n,(fej for each / > 0 and e,, —>• 0. This implies

n —* DC

that for every s > 0 and every t > 0, Xu.ao (M/(/)) 5 l 'm inf Xu.oo (/*/(/*•„))• Hence
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by Fatou's lemma,
.1

r(x,s.^(\f\))= I Xis.x>(Hi(\f\)) dtf
Jo

liminf / Xa.x)
"^^ Jo

liminf / Xu.x) (v-t(\fe D) dt

< limsup(4||M£J|,/5).

Hence rix^.^Alfl)) 5 4 | |M| | I /S. The proof is complete. D

As in the commutative case, Theorem 2 is used to extend the Hilbert transform to
V(M, T) . Recall that V^{J{,x) = {a e Jt\ sup,>of/u,(a) < oo}.

Set ||a||i.,c = sup, >otfx, (a) for a e L | 3 C (^# , T) . AS in the commutative case,
IMIi.x is equivalent to a quasinorm in L1 3C(^#, r ) , so there is a fixed constant C such
that, for every a, b e V " % # , T) , we have \\a + b\\K.^ < C(| |a| | , .^ + ll^lli.^).

For u € . # , let Tu — it + iu. The map T is linear and Theorem 2 can be restated
as follows:

For any u e M with u > 0, we have || 7"M || I.^ < 4 | |M| | I .

This implies that for u > 0.

Now suppose that u e ^ , u = u*, u = u+ — u- and u = u+ — u^. Then

Similarly, if we require only u € M, we have u = Re (M) + / Im (w) and by linearity,

u = Re(«) + / lm(u), and as above,

We are now ready to define the extension Jff in L ' (^# , T) . If u e L ' (^# , r ) , let
(«„)„£* be a sequence in .<*f such that ||u — M,,||I —* 0 as « —> cx>. Then

ll»» - "mlll.oc < IOC'\\U,, ~U,,,\\i,

and since || M,, — M,,, ||i —>• 0 a s « , w —>• oo, the sequence («„)„ converges in Llx(^, r)
to an operator M. This defines u for M e L ' ( ^ , r ) . This definition can be easily
checked to be independent of the sequence (u,,)n and agree with the conjugation
operator defined for p > 1.

Letting n —> oo in the inequality ||w,,|||_x < 10C3| |M,, | | I , we obtain the following
theorem (// '•" denotes the closure of H^ in L L D C ( ^ # , T) ) :
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THEOREM 3. There is a unique extension of J f from V{M', r ) into V ^ ( . # , r)
with the following property: u + iu e HLjc for all u e ZJ( .# , T), and there is a
constant K such that \\U\\L-X < K \\u\\{ for all u e L\J('. r).

COROLLARY 1. For any p with 0 < p < 1 there exists a constant Kp such that

\\u\\P < Kp\\u\U for all u eL\J/.x).

PROOF. It is enough to show that such a constant exists for u e M, u > 0. Recall
that for u e Jt', the distribution A.,(H) equals r(X(S.x)(u))-

Let F(s) = 1 — ks(u) — r(x«).j)(«))- Assume that ||M||I < 1. From Theorem 2,

4 4
1 - F(s) < -\\u\U < - .

s s

Note that F is a non-increasing right continuous function and for p > 0,

r(\u\") = f M\u\)"dt = f s''dF(s) < 1 + f s"dF(s).
Jo Jo J\

If A is a point of continuity for F(A > 1), then

f s"dF(s) = [s"(F(s) - l)]f + p f (1 - F(s))s'"lds.

Since 1 - F(s) < 4/.s, we get that both [s>'(F(s) - 1)]? a n d / ^ ( l - F(s))sp'lds are

bounded for 0 < p < 1, that is, fQ /j.,(\u\)pdt has bound independent of u. D

The Riesz projection & can now be defined as in the commutative case: for every
a e V'(.Jt, r ) , (1 < p < co),

From Theorem 1, one can easily verify that & is a bounded projection from
Lp{^i', T) onto Hp for 1 < p < oo. In particular Hp is a complemented subspace of
Lp(Jt, x).

For p = \, Theorem 3 shows that 0?. is bounded from L ' ( . # , r ) into / / ' 5C.

Our next result gives a sufficient condition on an operator n e t 1 (^# , r ) so that its

conjugate a belongs to L ' ( ^ , r ) .

THEOREM 4. There exists a constant K such that for every positive a e

llalli < Kz{a\og+ a) + K.
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PROOF. Let C be the absolute constant such that ||«||/; < Cpq\\a\\r for all a e
L ' ' ( .# . T), 1 < p < oc and I//? + 1/g = 1. The conclusion of the theorem can be
deduced as a straightforward adjustment of the commutative case in [31, p. 119]; we
will present it here for completeness.

Let a e . # ; we will assume first that a > 0. Let (e,), be the spectral decomposition
of a. For each k e N, let Pk = XVJ .:')(«) be the spectral projection relative to
[2*~',2*). Define^ = aPk for k > 1 and a0 = axio.i)(o). Clearly a = YlT=oa^
in / . ' ' ( .# . T) for every 1 < p < 00. By linearity, a = J2T=o^^- P° r e v e r v k e M,
\\akh 5 II<3AH;, £ CpHp- \)']\\ak\\p. Since ^ < 2* P*, we get for 1 < /? < 2,

llflitlli < 4 C - K
1

l l t l l i n )
P- 1

If we set /? = 1 + 1/(A- + 1) and €k = r(Pk), we have

llfltlli <4C(A- + l )2*e^

Taking the summation over k.

\\a\U <

We note as in [31] that if J = {k e N; et < 3"*} then

1)2*e^ < J^4C(k + 1)2*(3~*)^ = a < 00.
*€./

On the other hand, for k e h \ J, e{:~2 < ek 3^- < fiek where /3 = supt 3~-. So we
get

*=0

a +4CP(€0+4el)+4Cp

Since for k > 2, yt + 1 < 3(A - 1), we get

To complete the proof, notice that for k > 2,

c-
(k- \ ) 2 k - ] e k = (k- D 2 ' - 1 d r ( e , )

J2i-\

log 2
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Hence by setting K = max{a -I- 16Q8, 24C/6/ log 2}, we get:

llal l i < K + Kr (a \og+(a)).

The proof is complete. •

4. Concluding remarks

From Theorem 4, one can deduce that if a e V{M. r) is such that a > 0 and
a log+(#) belongs to L ' (^# , r) thena € L ' ( ^ , r ) . It is natural to try to characterize
the operators M e L ' (^# , r) for which M e L}{Ji, r ) . For the classical Hardy
spaces on T and K", a complete characterization was obtained by Davis in [5] using
signed decreasing functions. Later, Davis's result was generalized by Lancien for
weak*-Dirichlet algebras (see [18]) so the following question seems to be of interest:

PROBLEM 1. Is it possible to characterize all operators with conjugate in L ' ( . # . T)?

Let us finish with the following open question that arises from the classical case and
the topic of this paper: it is a well-known result of Bourgain [3] that L ' ( ! ) / / / ' ( ¥ )
is of cotype 2 and later Lancien [17] proved that a similar result holds for L' / / / '
associated with weak*-Dirichlet algebras.

PROBLEM 2. Is L\JC, x)jH\Ji, r ) of cotype 2? (or merely of finite cotype?)

It should be noted that the theory of conjugate functions and the boundedness of the
Riesz projection were very crucial in the proof given by Bourgain [3] for the classical
case and Lancien [17] for the setting of weak*-Dirichlet algebras.
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