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ABSTRACT. Thickness changes of ice sheets are, except perhaps at the snout region, small as compared to 
unity. This suggests using a coordinate stretching so as to make the surface changes in the new coordinates 
of order one. The explicit occurrence of the smallness parameter in the governing equations then allows 
us to search for perturbation solutions in various problems. Here, it is shown that the classical formula for 
the basal shear stress follows easily from such a perturbation procedure. Furthermore it can be improved to 
account for longitudinal strain effects. As compared to previous work in this area, these formulae are explicit 
and allow us to take vertical variations of material properties into account in a straightforward manner. 

RESUME. L' eifet de la diformation longitudinale sur le cisaillement dans une couverture glaciaire .. une illustration de 
l'utilisation de la dilatation des coordonnees. Les variations d'epaisseur des couvertures de glace, excepte peut-etre 
pres de la langue, sont faibles en valeur relative. Ce fait suggere le recours a la dilatation des coordonnees, 
de maniere a ce que les changements de niveau a la surface dans les nouvelles coordonnees soient de l'ordre 
de l'unite. L'incidence explicite du parametre petitesse dans les equations qui gouvernent ces mouvements 
nous perm et alors de rechercher des solutions par perturbation dans de nombreux problemes. Ici on montre 
que la formule classique pour le cisaillement a la base se deduit facilement d'une teUe methode par perturba
tion. Elle pe ut surtout constituer un progres pour la prise en compte des effets de la deformation longitudinale. 
En comparaison avec les travaux precedents sur ce sujet, ces formules sont explicites et permettent d'extrapoler 
pour rend re compte des variations verticales des proprietes materielles de la glace. 

ZUSAMMENFASSUNG. Die Wirkung von Liingsdiformationen au] die Scherspannung einer Eiskappe .. Begriindung]iir 
den Gebrauch gestreckter Koordinaten. Dickenanderungen von Eiskappen sind ausser in den Randgebieten klein 
im Vergleich zur Einheit. Diese Tatsache legt es nahe, eine Strecktransformation der Koordinaten derart 
vorzunehmen, dass die Oberflachenanderung im neuen Koordinatensystem die Grossenordnung Eins erhalt. 
Aus der Tatsache, dass ein kleiner Parameter explizit in die Gleichungen eingebaut werden kann, folgt, dass 
Losungen fur verschiedene Probleme mit Hilfe der Storungsrechnung zu find en sind. Es wird gezeigt, dass 
sich dabei die klassische Formel fur die Schubspannung an der Basis ergibt. Diese Formel kann sogar noch 
verbessert werden, um longitudinalen Verzerrungen Rechnung zu tragen. lm Vergleich zu fruheren 
diesbezuglichen Arbeiten sind diese Formeln explizit und erlauben eine direkte Berucksichtigung vertikaler 
Anderungen der Materialeigenschaften. 

I. INTRODUCTION 

The effect of longitudinal strain on the state of stress at the base of a glacier or ice sheet 
has been studied previously by Lliboutry (1958), Robin (1967), Budd (1968, 1970) and has 
found its theoretical basis in the articles of Collins (1968) and Nye (1969). In all these articles 
attention is focused on the significance of the longitudinal stresses set up by the flow of the ice 
over protuberances on the bed. The idea is to improve the formula for basal shear stress 
which to first order is independent of the material behaviour of the ice and involves only the 
local glacier depth and the local inclination of its surface. The improved shear-stress formula 
should account for the creep deformation of the ice and hence should depend on the creep law 
under consideration. This is indeed the case. 

According to the above result, then, local fluctuations in the variation of the upper and 
lower glacier surface manifest themselves in the basal shear stress (and other quantities). 
However, since local fluctuations cannot govern the overall mechanical behaviour of the 
glacier, only quantities which are averages over certain respective lengths are of physical 
significance. Dependent upon the size of this length, certain details in the local fluctuations 
are filtered out, and it is conceivable that for sufficiently extended averages the resulting mean 
stresses will agree with those obtained if the ice sheet is replaced by a slab of constant thickness. 
Such calculations were performed by Budd in his application to the Wilkes Ice Cap. His 
findings are that the basal shear stress does not fluctuate in sympathy with the surface slope 
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over distances of roughly four times the mean glacier thickness, but it does follow the surface 
slope changes over distances of the order of20 times the glacier depth. Consequently, the basal 
shear stress fluctuates much less than the surface slope. 

In a later paper (Budd, 1971) on the distribution of stress and velocity, an analysis was 
performed following the theoretical investigations of Collins and Nye in order to find the range 
of wavelengths which would sufficiently influence the basal shear stress formula and hence 
would corroborate the above results. Budd's analysis rested on his earlier paper (Budd, 1970) 
which was critically reviewed by Hutter and others (in press) and was found inaccurate. A 
quantification of the longitudinal strain effect therefore still remains to be given. 

In CoIlins' and Nye's analyses the variation of the basal shear stress is expressed in terms of 
integrals of normal-stress differences and of shear stresses. These terms are unknown as long as 
the stresses remain undetermined throughout the glacier. Therefore, it would be advan
tageous if a computational approach could be given by which longitudinal strain effects 
evolved by means of a method of successive approximation. I introduced such a method 
(Hutter, Ig80) in an article on time-dependent surface elevation of an ice slope. Starting with 
a long-wavelength assumption, a stretching of coordinates and a subsequent perturbation 
approach were introduced to solve the respective equations in a step-by-step manner. Here, 
I use the same approach again and shall demonstrate that the well-known basal shear-stress 
formula may be derived as a first-order approximation of this perturbation scheme, but more 
importantly, I derive explicit higher-order formulae with the aid of which the effect of material 
properties on the stress formulae can be determined. The method has the advantage of being 
explicit and that variations of ice properties with depth can straightforwardly be taken into 
account; it involves simple quadratures, which can be performed explicitly and analytically if 
the material properties of the ice do not vary with position. It demonstrates the special 
features of Glen's flow law and demonstrates that the creep behaviour of ice at low stretchings 
should be governed by another flow law than Glen's. 

Part of the reason for writing this article was to complement the calculations of Hutter and 
others (in press) and to give further justification that the use of stretched coordinates is 
appropriate and legitimate. In Hutter ( lg80), kinematic wave theory evolved as a first-order 
approximation of this singular perturbation method. Here, we demonstrate that the well
known basal shear-stress formula can equally be obtained as a first-order approximation. 
Furthermore, both kinematic wave theory and the shear-stress formula can be improved using 
our method in an explicit manner. This obviously gives clear indications about the validity of 
the classical formula. Such facts should serve as a reason in favour of, and not against, the 
method of stretched coordinates. 

Fig. I. Geometry and definitions for the ice sheet. 

https://doi.org/10.3189/S0022143000011217 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011217


EFFECT OF LONGITUDINAL STRAIN 

2. GOVERNING EQUATIONS 

Consider the slow flow of a viscous medium down a slope with slowly varying bottom 
surface and slowly varying thickness. Assume the medium to obey a non-linear constitutive 
relationship such as Glen's flow law or any generalization of it. Let, further, (x,y) be a 
Cartesian coordinate system; x is down and y normal to the plane x = 0 (see Fig. I), and 
assume the deformation to take place in the (x,y) plane only. The governing field equations 
describing plane strain and written down in dimensionless coordinates are 

where 

ocrx OT . 
- + - + smy = o, 
ox oy 

OT ocry 
- + --cos y = 0, 
ox oy 

OU ov 
ox + oy = 0, 

ou 
ox = t~ (tn2)(crx-cry), 

( I) 

} 
In these equations x and y are dimensionless Cartesian coordinates, (crx, cry, T) dimensionless 
normal and shear stresses, respectively, and (u, v) are dimensionless velocities. The function 
~ ( .) characterizes the type of Maxwellian fluid adopted here. For a = 0 the emerging 
equations describe the flow of a fluid obeying Glen's flow law, a =1= 0 gives a slight generaliza
tion of that. 

Incidentally, in the above the non-dimensionalization is the same as in Hutter (I g80) ; 
consequently, lengths, stresses, and time are non-dimensionalized with a representative 
thickness of the ice sheet D, with cro = pgD, where p is the mass density of ice and g the gravity 
constant, and with the timeT = A-I (Yo)[pgDB (p2g2D2)] - 1 where A, n are phenomenological 
coefficients of the generalized Glen flow law 

Djj = AB(tn'2) tij', B(x) = x(n-Il/Z+a. 

Here, D jj is stretching, tj/ stress deviator, tn'Z its second invariant, and a-I a linear viscosity 
(a = a/( pgD)n-,). Such a non-dimensionalization guarantees that u, D, and crx, cry, Tare 0(1) 
as long as y is finite. It should also be noted that D is the only quantity in the above scaling 
provided by field observations. All other quantities follow from material properties of ice. 

In ice sheets, the material properties strongly vary with temperature and hence with y . 
In this case we may assume n and A to be functions of the depth variable y; Yo is a reference 
depth, usually the surface or the base. More generally the variations in surface and bottom 
geometry also give rise to an x-dependence of the temperature field. This variation is neglected 
here. 
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Equations ( I) and (2) are to be solved subject to the boundary conditions, 
at the base y = r B(X) : 

d~ } v = -d-x-u, 

U cos f3+v sin f3 = </>{ T( cos2 f3-sin 2 (3) + (ax-ay) sin f3 cos (3}m; 

at the top surface,y = r (x, t): 

or or 
Tt+ ox u-v = I!l, 

T = Hay-ax) tan 2(X. 

</> and m are constants describing the sliding mechanism at the base, I!l is a dimensionless 
accumulation rate, and (X and f3 are the angle of bottom and surface inclination relative to the 
mean inclination y . They are defined as 

or 
tan (X - -- ox' 

drB 
tan f3 = - dx . (5) 

Henceforth, approximate solutions to the above boundary-value problem will be sought which 
are based on a perturbation expansion procedure. The full determination of such solutions 
includes the fields and the geometry of the top surface as functions of time. The perturbation 
technique presented below, however, allows the separation of the two. In particular, from the 
assumption of the bottom and top topography, the stress and velocity fields are determinable, 
provided, of course, that the temperature distribution is also known. This makes the solution 
technique especially valuable, if field records of geometry and temperature are known. It 
should be stated, however, that the equation for the top-surface geometry could also be 
obtained; this was demonstrated by Hutter ( 1980) and will not be repeated here. In the 
following it will therefore be tacitly assumed that the surface geometry is known from field 
measurements. Subsequent calculations may therefore be viewed as a recipe to obtain values 
for stresses and velocities at given geometry. 

3. STRETCHING TRANSFORMATION 

I t is an experimentally established fact that surface undulations in glaciers and ice sheets 
are slowly varying. The same is also true for the bottom topography. It is therefore only 
natural to incorporate this slowness assumption into the governing equations by means of a 
stretching of coordinates. Thus let 

g = p,x, "I=y, 

I 
t = - T, 

IU= U, } 

V=-v. 
p, P, 

(6) 

p, is called the "stretching parameter" and may be defined as the ratio of a mean glacier 
thickness to a typical wavelength of surface undulations. Another physically reasonable 
definition of this parameter would be the ratio of the mean thickness to the distance over 
which the glacier thickness changes appreciably. 
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Incorporating Equations (6) into the governing equations, we obtain the following: 
field equations: 

ocrz OT . 
/k -ag+ 0'7 +sm y = 0, 

oV oV 
ag+ 0'7 = 0, 

oV 
/k ~ = -HS(tn2)(crz-cry), 

boundary conditions: 

()V OV 
a:ry+/k2 og = 2.(tn2) T. 

or or \!l - +- U- v--OT og - /k' 

or (or)2 cry-2/kT ag+/k2 (crz -cry) ag +O(fL3) = -p, 

or 
T+fL(cry-crz) og+O(fL3) = 0, 

at '7 = r(g, t). 

43 

(8) 

The stretching parameter has now entered the governing equations and since I choose fL such 
that r ( g, t ) has derivatives 0 (I) this together with the slowly varying nature of r with x 
implies that fL ~ I. Values for fL suggested by field data are fL = IQ- I to 10-2 • This fact 
suggests searching for solutions in powers of /k. Only after the introduction of such a perturba
tion expansion is the proposed solution technique approximate. 

The stretching transformations (6) are not new; they have indeed been widely used in 
other branches of fluid mechanics. Friedrichs (1948) and Keller (1948) have introduced them 
to derive the shallow water equations in the theory of water waves, see also Stoker (1957). A 
summary of research on water surface waves based on these transformations is given in the 
Handbuch der Physik by Wehausen and Laitone (1960). The same transformations have also 
been used by Benney (1966) in a theory of thin liquid films. In all these cases the stretching 
transformations (6) are used as a means of deriving a systematic way of approximating field 
equations which were previously derived by more ad hoc methods. In these the underlying 
assumptions are often unclear or hidden. To the non-specialist the emerging equations then 
look more rigorous than when derived with a systematic approach. It is because of his 
unawareness of this that he will ask for a justification of the transformations (6). In fact, 
there is nothing that needs to be justified with the stretchings (6) as long as the emerging 
equations are treated with full rigour. When approximate solution techniques are used, 
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however, one may justifiably ask about the limitations of the results, but this is no different 
from other approximate-solution techniques. As regards singular perturbations, results a re 
believed to be correct as long as they "look reasonable", see Van Dyke ( 1975). 

4. LONGITUDINAL STRAIN EFFECTS 

Consider the boundary-value problem given by Equations (7) and (8) under the accumula
tion rate ~( g, t). Let us construct solutions to it by the power-series expansions 

00 (j) (j) (j) (j) (j) 

(crx, cry, T, V, V) = I fk ( crx, cry, T, v, V). (9) 
= 00 

Substituting Equation (9) into Equations (7) and (8), respectively, expanding the resulting 
equations in powers of fk and collecting terms of like powers of fk, a hierarchy of boundary
value problems is obtained. The zeroth-order equations read 

(0) 

(17 . 
(0) 

ocrx (0) 

- = -SIn y, 
07] 

a;; = cos y, crx .= cry, (0) } 

(0) (0) 

oV oV 
-ag+ 07] = 0, 

and must satisfy the boundary conditions 

(0) 
oV (0) (0) 

a:ry = 2)S ( T2) T, 

(0) (0) 

V = <p Tm, 

(0) (o) dYB 
V = V dg , 

(0) (0) 

cry = -p, T = 0, 

( 10) 

( 1 1) 

Note that the kinematic boundary condition must not be exploited here because surface 
geometries are assumed known. 

Straightforward integration yields 

(0) 

T = sin y(Y -7]), 

(0) (0) 

(jx = cry = cos Y (7]-r)-p, 

'7 

(0) f V = 2 ~(sin2 Y(Y- 7]' )2) sin Y ( Y-7]' ) d7]' + 4> sinm yH(g) m, 

TB 

t' = -2 ~~ f d7]' J [~ (sin2 y ( Y - 7]")2) sin y + 

TB TB 

+2~' (sin2 y ( Y _7]")2) sin3 y ( Y _7]")2] d7]" + 
dYB.. . oH 

+2 dT )S (sm 2 y H2) sm y H (7] -YB)-4>m smm y Hm- l 3I (7] -YB)+ 

dYB 
+ 4> sinm y H (g) dg , 

where ~' denotes the derivatives of)S with respect to its argument and where H = Y - Y B. 
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The first-order equations are 

(I) (0) 

aT ay oay . ay 
a7] = cos y og' 07] = -sm y o~' 

(I) (I ) 

oV oV 
ay+ 07] = 0, 

subject to the boundary conditions 

(I) (0) (I) 

U = q,mTm-1T, 

(I) (o)ay 
cry = -2Tag' 

Integration then reveals that 

(I) ay 
T = cos Yag (7]-Y), 

(I) ay 
cry = -sin Yag (7]-Y), 

(I) (')dYB 
V= v df , 
(I ) 

T = 0, 

(0) 
(I) ay 2 oV 
crx = sin Y a~ (Y-7]) + Ja (sin2 Y(Y-7])Z) --a[' 

'1 

(I) aYf ay 
u = 2 cos Yag :IJ (sin2 y ( Y -Tj)Z)(Tj-Y) dTj-q,m sinm- I Y HmW cos Yag' 

ra 

ty = 2 cos Y co~r f f {2~' (sinZ y(Y _7]')2) sin2 y(Y _ 7]')2+ 
ra ra 

+~ (sin2 y (Y -7]' )Z)} d7]' dTj-

- 2 cos Y ~:~ f {Ja(SinZ Y(Y-7]')2) (7]' - Y) d7]' dTj-
rn ra 

45 

Equations (12) and (15) furnish explicit expressions for the stresses and the velocities in a 
glacier with slowly varying bottom and upper surfaces. Once the latter is known, the stresses 
and velocities follow by mere substitution. 
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Higher-order terms are rather cumbersome to determine; yet second-order stresses may 
still be calculated with reasonable effort. The reader may show himself that 

(2) (1) (1) (0) 

aT oax oay 0 [ 2 OU] 
01] = -a{ = -8[-og ~(sin2 y ( Y _7))2) a[ , 

(2) (1) (r) ay 
T = (ax-ay) ag' at 1] = Y(g, T). 

( 16) 

Notice that this expression becomes singular if Glen's flow law is used, because in that case 
.(0) = o. This is the reason for its extension as listed in Equation (7). Here a word of 
caution is in order. The difficulty with Glen's flow law is primarily not a physical, but a 
mathematical one connected to the proposed perturbation approach. As a --+ 0 the solution 
technique fails. It would, therefore, be appropriate to search for a mathematical procedure 
which remains regular as a --+ o. Such a solution technique would have to be sought using a 
multiple-variable expansion. With such a technique the possible accumulation of sing ulari ties 
that might arise with the above procedure when approaching the limit a --+ 0 could be 
avoided. Despite this fact my solution technique is reasonable, since a is bounded away from 
zero with a value of roughly 10-3. Since IL' (terms of this order are the first ones that become 
singular when the limit a --+ 0 is taken) is smaller, in general, I do not expect that corrections 
O(/L2 ) will become invalid. 

With the aid of Equations (12), Equation (16) can be shown to have the form 

(2) oY dYB o,y d'YB 
T = T1ag-T, dg +T3 og,-T4 dg' + 

+T5 Co~)2+T6 (~~)(d~B)+T7 (d~B>, (17) 

where 

i=l, 2, 3, ... , 7· 

and where TI and T2 vanish when no g-dependence of the temperature field is assumed. 
The evaluation of the functions T1. is rather tedious even though it is straightforward. In 

fact, it can be shown (see Appendix) that only quadratures are needed if~ is restricted to the 
form given by the second of Equations (2). These quadratures can be performed explicitly if 
the material properties of the ice do not vary with position. Calculations for this case have 
been performed in the Appendix. 

Our aim in this paper is to find explicit formulae to evaluate the effect of longitudinal 
strain on the basal shear stresses. With the first of Equations (12) and the first of Equations 
(15) this goal has been achieved in a most satisfactory way, because, as can be seen from the 
Appendix, only quadratures are needed to evaluate the coefficients TH ... , T7 of the repre
sentation (17). These quadratures can be carried out algebraically if the material properties 
do not vary with depth, and the emerging model is a reasonable one for temperate glaciers. 
In cold ice as in the Greenland and Antarctic ice sheets, the stress-strain-rate relationship 
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depends strongly on depth, since temperatures vary appreciably. In this case numerical 
integrations are necessary, but this is no disadvantage, because electronic computations are 
needed anyhow. . 

To find explicit formulae for the basal shear stress, let us combine the first equations of both 
Equations (12) and Equations ( IS). This yields 

or 
T(g, 'Y}, t ) = sin y(r-'Y})+,u cos Yat ('Y}-y) + 0 (fL2), 

and since a/ox = fL a/ag this can also be written as 

T(X, 'Y}, t ) = [sin y - cos y a~] (r -'Y}) + o (,u2) 

= [sin y+ cos y tan a](r -'Y} ) + 0 (fL2). 

At 'Y} = r B and for small y, a and f3 this becomes 

Tb = (a+ y)(r-rB)+0 (fL2). ( 19) 

To first order and for small inclinations, the basal shear· stress is proportional to the local 
surface inclination (a+ y) and to the coresponding depth. This is the classical formula well 
known to glaciologists. Neither Equation (18) nor Equation (19) are apparently general 
enough to account also for the longitudinal strain effects. These are contained in Equation 
(17) and previous lower-order stress formulae and must be evaluated from 

Tb = T cos 2f3-Hcry-crz) sin 2f3. 
To second order in fL this yields 

[ 
. or] { or drB aq d2 rB 

Tb = sm y-fL ag cos y ( r - rB) +fL2 T, ~- T2 dT+ T3 ag2 - T4 dg2 + 
(0) 

(ar)2 [ 2U,,] or drB 
+ T5 ~ + T6-~ (sin2 y(r-rB)2) ag dg + 

where T" ... , T7 have to be evaluated at 'Y} = rB. 
Before I present additional information regarding numerical results, let me stress once 

more that the term containing ,u2 as a common factor does account for longitudinal strain 
effects. Without this term and for small base and surface inclination angles, the basal stresses 
would vary in sympathy with surface slopes, which is contrary to observation. The term 
0(fL2) therefore accounts for exactly this difference. That the relevant term is multiplied by a 
very small quantity fL2 does not, however, imply that the entire term is negligibly small; this 
would imply that the term in braces was of numerical O( I). This cannot be guaranteed, 
although the limit process fL -+ 0 is mathematically sound. As an aside remark I might 
mention that a similar situation occurs in the derivation of the surface wave equation (see 
Hutter, 1980) ; the derivation of that equation shows that the coefficient accounting for diffu
sion* is fL cot y. Obviously for small fL this term might still be 0 (1) as, e.g. if y = O(fL), 
which is the case for all ice sheets and most glaciers. The 0 (,u2) term in Equation (20) is 
therefore not a priori negligible unless, of course, numerical calculations provide corroboration 
to the contrary. This is not the case as we shall see. 

* Nye in his kinematic wave theory did exactly account for the significance of this term. 

https://doi.org/10.3189/S0022143000011217 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000011217


JOURNAL OF GLACIOLOGY 

5. NUMERICAL RESULTS 

To obtain quantitative information regarding the order of magnitude of the longitudinal 
strain effect on basal shear, a temperate ice sheet was analysed whose bottom and top surfaces 
were varied according to the expressions 

where 

0 < K < I, 

in which n = (2,3). Evidently the bottom ice- bed-rock interface oscillates sinusoidally with 
an amplitude EB ~ I and a dimension less wavelength A = I. Written in physical variables 
the second of Equations (2 1) reads (bars indicate physical variables) 

(
HIt) fB = EH cos 21T----;-X = EHcoS (21TX). 

Hand t are the maximal thickness of the ice sheet and the wavelength of the bottom undula
tion, respectively, and f-L = HIt ~ 1 is the ratio of the two. The oscillating part of the first of 
Equations (21) must be interpreted analogously. The expression in Equation (22) for YI(x), 
on the other hand, corresponds to 

_ {(x)(n+I)/n}n I2(n+Il 
fl (x) = H 1- L ' 

where L is the half-length of the ice sheet. For brevity YI will be called the "equilibrium 
surface". Straightforward comparison of Equations (22) and (23) yields K = tlL. The top 
surface varies therefore according to the equilibrium geometry of Equation (22) ; superimposed 
on it are sinusoidal undulations whose wavelength is the Kth part of L. 

The equilibrium profile, Equation (23), has one particular mathematical disadvantage, 
namely that it may lead to singular second derivatives at the head. Such behaviour is un
realistic, but it manifests itself in the expression for the second-order shear stresses. We shall 
in the following analysis therefore exclude the neighbourhood of both head and snout. 

The above representations (2 1) may not be realistic in a real situation, but they will give 
an indication of the order of magnitude of the basal shear stress. For 'i'1 (x) is close to the top 
geometry of an ice sheet and the sinusoidal term may be regarded as a particular term of a 
cosine Fourier representation of the difference (f rea1 - f l ). Varying E, EH, and K thus gives a 
reasonably realistic picture of longitudinal strain effects. We have performed such 
calculations; they are described below. 

Of particular interest is the correction O(f-L2) of the shear stress. It is, therefore, most 
convenient to write 

(0) (I) (0) (2) (0) 

Tb/T = 1-f-L(-rfT)+f-L2(TIT)+ ... , 
(0) (2)(0) 

where T = sin y( Y - Y H), and to graphically display only the coefficient TIT. It represents 
the influence of the longitudinal strain effects on the basal stresses. Calculations were per
formed for no-slip and for a Weertman-type sliding law by varying the coefficient cp. The 
exponent in the generalized Glen flow law was given the values 2 and 3, and correspondingly It 
assumed the values 10-2 and 10-3. * The mean inclination angle y was varied between 
y = 10-3 and 2 X 10-1 • 

• That these are reasonable values has been shown by Hutter and others (in press) . 
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In a first set of calculations, periodic undulations were set aside, E = 0, EB = 0, a nd only 
the influence of the eq uilibrium geometry was analysed. For n = 2 Figure 2 shows the second-

(2)(0 ) 

order shear-stress corrections TIT as a function of posi lion and plotted for various inclination 
angles y. Except for very small values of y and close to the snout * the second-order shear
stress corrections are nea rly independent of x and only very weak ly dependent on y. Interes t
ing ly, second-order shear-stress corr ections are virtua ll y independent of the sliding law. 
This is so at least for rea listic values of 1> ~ 10- 2 • Generally, it may be stated that longitudinal 
strain effects are negligible except perhaps for y < 10 - 2 and in the snou t region. Th e corres
ponding results for n = 3 show quite the contrary, see Figure 3 ! As is apparent here, the 

(' )(0 ) 

dependence of TIT on y is more pronounced than for n = 2 . In particular for 11 = 3 and for 
(0)(0 ) 

small y (~ 1O-2) , TIT is independent of y , whereas for n = 2 independen ce of y seems to apply 
for large y. Moreover, whereas for n = 2 results were insensitive to sliding, this can, stric tly, 
not be said here, since for c/> = 10 - 2 a n onset of deviations from the curves for c/> < 10- 2 can 
be observed (the resu lts for c/> = 10- 2 are not graphically displayed. 

EXP0NENT N :: 2 

. S 

(' )(0) 
Fig. 2. Second-order basal shear stress TIT for the equilibrium 

geometry DJ a glacier. The parameters ill the generali::ed 
Glen flow law are n = 2, n = f O- ' . The da shed lilies, 

Jar which the right-hand scale is applicable, represell t Ihe 
same as the solid lilies. In this alld all sllbsequent figllres 
the symbols indicate the values oJ y, the key being given 
in Figure 411, and the abscissae are gK. 
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Fig . 3, Second-order basal shear stress TIT Jar the eqllilibrium 

geoll/el~Y oJ a glacier. The parameters ill the gelleralized 
Glen flow law are 11 = 3, n = f 0 - 3• The da shed lilies, 
Jar which the right-hand scale is applicable, represent Ihe 
same curves as the solid lines. 

( , ) 

The strong dependence of the basal shear stresses T on the exponent in Glen's flow law is 
surprising and it is to be expected that it will also be seen when sinusoidal undulations of the 
bottom and top surfaces are superimposed. This is true, yet when this superposition is 
perform ed, the parameters I ( (the ratio of undulation wavelength l to the g lacier lengt h L ), 
E, a nd EB enter. Dependent on their values the behaviour due to equ ili b rium geometry m ay 
totally be overshadowed, Calcu la tions were performed for K = ( I , 0,75, 0.5, 0,25) and 
(E, EB) = (0,0 1,0,05,0, 1). Undu lation wavelengths thus varied between a quarter to the full 
ha lf-length of the g lacier and undulation amplitudes varied between one-hundredth to 
one-tenth of the maximum ice-sheet thickness, 

* C lose to the snout the assumptions of slow variations are no longer satisfied. R esults will therefore only be 
shown for Kg <: o.g, 
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In order to demonstrate that bedrock undulations of very small amplitudes contribute 
significantly to the second-order basal shear stresses, we have displayed in Figure 4a to d 

(2)(0 ) 

values of TIT for the case when n = 3, EB = 0.01, E = 0 and for four different values of K. 

When compared with Figure 3 it is seen that with decreasing wavelength the influence of the 
equilibrium geometry becomes smaller and smaller; for K = I the behaviour as displayed in 
Figure 3 can still be recognized, although the bottom protuberance is clearly observable in the 
undulating behaviour of the stresses. In particular, the order of magnitude of the maxima of 
the basal shear stresses is similar. With decreasing wavelength these maxima become smaller 
and smaller; for K = 0.25 the equilibrium behaviour is completely overshadowed by the 
bottom geometry. Nonetheless the variation of the surface geometry is not negligible in this 
case, because the curves in Figure 4d are far from periodic. It is, further, recognized that, for 
large y, amplitude maxima drop with decreasing 1(, This is an indication of the fact that basal 
shear stresses vary in sympathy with bottom undulations very much more when wavelengths 
are large than when they are small. 

The above results are valid for n = 3. It is interesting to test whether an equally strong 
dependence on the wavelength of bottom protuberances would also be visible for n = 2. 

For K = I second-order basal shear stresses resemble pretty much the behaviour of Figure 2; 

with decreasing wavelength the significance of bottom undulations becomes more and more 

o y - 0.001 
'" Y _ 0 .005 
+ y . 0.01 
X y- 0 .05 
<!> y ' 0.1 
.,. y . 0.15 
;5<: y . 0.2 

X. KRPPR 

a 

0.5 

X. KRPPR 

EXP0NENT N = 3 EXP0,'ENT N = 3 

X. KRPPR 

b 

EXP0NENT N = 3 EXP0NENT N = 3 

X. KRPPR 

d 

(2 )(0) 
Fig. 4. Second-order basal shear stresses T/ T when a sinusoidal bottom protuberance is superimposed on the equilibrium surface 

geometry. The parameters in the generalized Glen flow law are n = 3 and a = IO-3. Bottom amplitude is EB = 0.01 

and the wavelength parameter is for a, K = 1 j b, K = 0.75 j C, K = 0.5 j d, K = 0.25. 
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EXP0NENT N == 2 

~ 

~~~-~~,~77--~~~~~~--~--~~ 

X. KRPPA 

Fig. 5. Second-order basal shear stresses whet! the parameters in the generali z ed Glen flow law are n = 2 and il = IO->. 

Undulation amplitudes are EB = O.O[ and wavelength parameter is K = 0 . 25. 

important. As a corroborating example Figure 5 (corresponding to Figure 4d ) may serve, in 
which EH = 0.01 and K = 0.25. Except for y = 0 .00 1 and then only close to the snout, 
surface geometry seems to be of little significance. On the other hand, a comparison of 
Figures 4d and 5 clearly indicates the importance of the value of the parameter n. 

It is not far from reality to state that the importance of bottom undulations also grows with 
growing amplitude EB. Calculations were therefore also performed for EB = ( 0.05, o. I ) , and 
they corroborate the above statement. For K < I this proof need not be demonstrated, 
because Figures 3 and 4 are sufficiently convincing. For K = I Figures 6a and b may serve as 

(. ) (0) 

examples. They show the g dependence of 7' / 7' for EB = O. I, K = I and n = 2 and n = 3, 
respectively. These figures are not only interesting for the fact that very little of the behaviour 

(. )(0 ) 

as shown in Figures 2 and 3 is left; they simultaneously demonstrate that 7' / 7' critically depends 
(. ) 

on the exponent n in the generalized flow law. First, the tendency of the sign of 7' as a function 
(.) 

of x is different. For n = 2, 7' is negative in the middle part of the half glacier and positive 
(. ) 

in the head and snout region; for n = 3, 7' is positive close to the snout and negative elsewhere. 
Secondly, and very roughly, second-order basal shear-stress corrections are more than twice 
as large for n = 3 as they are for n = 2. These corrections are also the bigger the larger the 

o 
::l 
go 
, ~ 
N. 
::l 
a: 
t:: 

L 
EX PC3NENT N '" 2 

£3 6:~ 

X. KRPPR 
a 

X. KAPPA 

b 

Fig. 6. Second-order basal shear stresses for the case w/zm EB = O. [ and K = [. The parameters in the generalized Glen flow 
law are n = 2, il = [0-> (if. Fig . 6a ) and n = 3, a = [0- 3 (if. Fig. 6b). 
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mean inclination y. Calculations with K < I have also indicated that this difference 
diminishes with decreasing K, but the above-mentioned sign difference appears to be fairly 
persistent for I ~ K ~ 0.25. I regard this as serious, because it makes calculations regarding 
the effects of longitudinal strain on basal shear questionable unless one has firm knowledge 
about the material behaviour. 

It is interesting to see whether or not similar conclusions would emerge when EB = 0, but 
E i= o. Calculations were performed for E = (0.01,0.05,0.1) and the same values of the 

(2)(0) 

wavelengths. These calculations indicate that the qualitative behaviour of the curves TIT 
(2 ) 

for n = 2 and n = 3 is similar. In particular, for both choices the sign of T is the same in 
roughly the same regions (of the variable 0 and, furthermore, second-order corrections are the 
bigger the larger y. Yet, the size of these corrections is very much greater for n = 3, than it is 
for n = 2, especially when y > 0.05. Evidence for this is provided by Figures 7a to d which 

(2)(0) 

shows TIT for E = 0.1, n = (2,3), and K = (1,0.25). Evidently, and quite opposite to the 
behaviour displayed in Figure 6, second-order basal shear stresses for n = 2 and n = 3 are 
"in phase". Amplitude maxima grow with growing y, but for large inclination angles yand 
for n = 3 they are bigger than for n = 2 by an order of magnitude. This is just another 
indication that longitudinal strain effects should only be taken into account when firm 
knowledge about the material behaviour is available. 

X. KRPPR 
a 

X. KRPPR 

X. KRPPR 

b 

X. KRPPR 

d 

Fig. 7. Second-order basal shear stresses for the case when" = 0.1; a and b show the results when K = I, C and d those when 
K = 0.25. The parameters in the generali zed Glen flow law are n = 2, a = 10-2 (a and c) and n = 3, a = 10-3 

(b and d). Notice the differences of order of magnitude for n = 2 and n = 3 respectively. 
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Before I conclude, mention should be made that the above analysis assumes the surface 
geometry to be known. Mathematically this is a disadvantage as the determination of the 
surface profile should be part of the problem to be solved. This could be done by substituting 
the results obtained for the velocities into the kinematic surface condition, the first of Equations 
(8), and solving the associated differential equation. However, this was not my intention here. 

MS. received 30 April 1979 and in revisedjorm 13 August 1980 

APPENDIX 

(0) (0) 
IN this Appendix we derive Equation (17). To this end, expressions are needed for OU/O~ and oZU/o~z. These 
can be derived straightforwardly from the third of Equations (12) by differentiation. One obtains 

where 

(0) 
oU (0) OY dYB (0) 
a[ UII ag- (If UZl) 

(0) 

oZU _ (0) o'Y (0) (OY)Z _(O) oYdYB_(O) dZYB (0) (dYB)Z 
otz - U I, otz + U.z ot U3Z ot dt U., d~' + Usz dt ' 

~ '7 '7 

U II = 2 sin y J ~(sin' y(Y-iil') dij + 4 sin3 y J ( Y-W~'(sin' Y(Y- ii )z) d'1+ 

} 

rB rB +sinmy </>m(Y - yB)m-I, 
(0) 
U'I = 2 sin y ~(sin' y(Y- YB)' )( Y - YB)+</>m sinm y(Y- YB)m-I, 

(0) '7 

U IZ = 2 sin y J ~(sin' y( Y -ii)z) dij+ 

rB '7 

+4 sin3 y J (Y -ii)z~'(sinz y (Y -ii)') dii+sinmy </>m(Y - YB)m-I, 

rB 
(0) '7 

Uz, = 12 sin3 y J ~'(sin' y(Y_ij )z)( Y_ij) dii+ 

rB '7 

+8 sins y J ~H(sin' y(Y -ii)')(Y -ii)3 dii+</>m(m- I) sin m y(Y - YB)m-z, 

rB 

(0) 
U., = 2 sin y ~(sin' y(Y - YB)Z)(Y- YB)+</>m sinm y(Y - YB)m-I , 

(A. I) 

(A.2) 

which are all functions of Y, YB, and '1 Substituting (A.I) into Equation (16) and re-arranging the emerging 
results reveals that 

(2) 
T = 
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in which T
" 

. .. , T7 are the following expressions: 

(as the temperature is independent of t ), 

r (0) 

T - f UdY, YB ,.;; ) d.;; 
4 - 2 1Jil(sin' y(Y_';;)') , 

T/ 

r (0 ) 

To - .• f 1Jil' (Sin' y(Y-';; )' )( Y-';; ) U.,(Y,YB'';; ) d-_ 
6 - 4 sm y [1Jil(sin' y(Y _ ';; )')]' 7] 

T/ r~ 

f U,, (Y, YB, .;;) d.;; 2 <cJ (Y Y ) 
-2 1Jil(sin. y(Y_';;)') 1Jil(o) " , B,7], 

'I r (0) 

T. = f U3.(Y, YB,';;) d';; 
7 "'(sin' y(Y_';;)') . 

T/ 

It is seen that the second-order shear stresses are determinable once the surface and bottom geometry and the 
function 1Jil(.) are prescribed. The computations involved are only quadratures. 

As an example, consider the generalized Glen flow law of Equation (2), with A=constant, 

so that 

""(sin' Y(Y-7] )' ) = ~ _1_ [sin' Y(Y- 7])'] (n-3)/" 
2 I+a 

jliJH(sin' Y(Y-7] )') = (n- l)(n-3) _1_ [sin' y(Y-7]),](n-s)/,. 
4 I + a 

(0) 
Substituting (A.S) and (A.6) into (A.2) yields explicit expressions for Ui" namely, 

} 
(0) 2a. 2 sinn y . 
UIl = --sm y(7J-YB)+--- [(Y-YB)n-(Y-7])n]+q,m smm y(y_yB)m-l, 

I+a I+a 

(0) (0) 2a. 2 sinn y . 
U .. = U" = I+a sm y(Y- YB)+I+iI (y-YB)n+.pmsmm y(y_yB)m-I, 

(0) (0) 
U

" 
= UIl , 

(0) 2n 
U" = I +a sinn y[(Y - YB)n-,- (Y _7J)n-I]+.pm(m-l) sin m y(Y - YB)m-" 

(0) 
U3, = +4 [nsinn y(Y-YB)n-I+a]+2q,m(m-l) sinm y(Y-YB)m-" 

I a 

(0) (0) 

US2 = !U32• 

(A·S) 

(A.6) 
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These expressions may now be used in the evaluation of T" . .. , T,. After lengthy manipulations the following 
expressions are obtained: 

a(2-n) /(n-I) (A.8) 
+2 (1 + a ) q,m sinm y (Y - YB )m- I . @n(?€ ), 

T, = I., 

where 

_ sin y Y_ 
?€ - aI /(n - I) ( '1), 

sm y 

12 = ~ [2a(Y-YB)+ 2 sinn- I Y(Y-YB )n+ q,m ( 1 + a) sinm- I y (Y _ YB )m- I] _,_1-
2a sm y )(n- I + I ' 

I. = a(2- n) /(n - I)@n()(){4[n sinn y(Y - y B)n- I+ n] + 2q,m (m - I ) sinm y (Y - YB )m- I}, 

with 

{

In (X+ I) , 
@n(x) = 

arctan (x), 

n = 2, 

n = 3, 

~ (X) = 
{

X-_
I
_ - 2In ( I +X) 

X+ I ' 

2X3 3x 
I +X2 + I +X2 - 3 arclan x, 
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