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An approach to Complexity from the perspective of fundamental science is

outlined, drawing on the cross-fertilization of concepts and tools from nonlinear

dynamics, statistical physics, probability and information theories, data analysis

and numerical simulation. Emphasis is placed on the intertwining between

different levels of description and on the probabilistic dimension of complex

systems, in connection with the issue of prediction.

It has been established that large classes of systems composed of interacting
subunits give rise to certain characteristic behaviours, perceived by the observer
as ‘complex’, and which are encountered in a variety of contexts of great interest
from the materials we manipulate in everyday life to the seemingly capricious
fluctuations of the weather or of the stock market.1–3 For a long time the idea
prevailed that this perception reflected essentially the practical difficulty of
gathering detailed information on such systems, following the presence of often
prohibitively large numbers of parameters and variables masking the underlying
regularities. This view, which if true would leave no room for a scientific
approach to complexity, is now obsolete. Theoretical and experimental devel-
opments spanning the last two decades show that complexity is, on the contrary,
an authentic phenomenon rooted in the laws of nature and in fact constitutes, in
many respects, the most exciting and innovative facet of systems composed of
interacting subunits – undoubtedly, the vast majority of systems encountered in
nature and interfering with man’s everyday experience. This realization leads to a
drastic reshaping of the scientific landscape and is at the origin of a new scientific
paradigm qualified in this context as a ‘post-Newtonian’ paradigm.4

The way is now open for a research on complex systems as a branch of fun-
damental science. On one side, one witnesses the encounter and cross-fertilization
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of concepts and techniques from nonlinear dynamics, chaos theory, statistical
physics, information and probability theories, data analysis and numerical simu-
lation, in close synergy with experiment. While on the other side, insights from
the practitioner confronted with large-scale systems as encountered in nature,
technology or society – many of them outside the strict realm of traditional
mathematical and natural science, where issues eliciting the idea of complexity
show up in a most pressing manner – are increasingly being integrated into the
general framework. Concepts that until recently were not even part of the
established scientific vocabulary are now occupying a central place forcing a
reassessment of principles and practices. This synthesis, this conjunction of
complementary views, this multilevel approach confers to complex systems
research its unique status, high relevance and added value beyond the traditional
disciplinary approach to the understanding of nature. In addition, to being one of
the most active and fastest growing branches of science, complexity research is
today a forum for the exchange of information and ideas of an unprecedented
diversity cutting across scientific disciplines, from pure mathematics to biology
to finance.

It is often stated that fundamental science is tantamount to the exploration of
the very small and the very large. This assertion becomes, simply, unfounded in
the light of progress in complex systems research. There exists, indeed, a huge
class of phenomena of the utmost importance between these two extremes
waiting to be explored, fundamental as well as practical, in which the system and
the observer – the external world and ourselves – co-evolve on comparable time
and space scales.

Complex systems display a phenomenology of their own

A system perceived as complex induces a characteristic phenomenology, the
principal signature of which is the multiplicity of possible outcomes, endowing it
with the capacity to choose, to explore and to adapt. This process can be man-
ifested in different ways.1

> The emergence of traits encompassing the system as a whole, that can
in no way be reduced to the properties of the constituent parts.
Emergent properties are manifested by the creation of self-organized
states of a hierarchical and modular type, where order and coherence
are ensured by a bottom-up mechanism rather than through a top-
down design and control. Classical laboratory scale examples of this
behaviour are found in fluids under stress (e.g. Rayleigh–Bénard cells
in a fluid heated from below) and in open chemically reacting systems
(e.g. bistability, oscillations, Turing patterns and wavefronts in the
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Belousov–Zhabotinski reaction and related systems). Further examples,
in naturally occurring systems, are provided by the communication and
control networks in living matter, from the genetic to the organismic to
the population level.

> The intertwining, within the same phenomenon, of large-scale
regularities and seemingly erratic evolutionary trends. This coexistence
of order and disorder raises the issue of predictability of the future
evolution of the system at hand on the basis of the record available.
Typical examples are provided by the atmosphere in connection with
the familiar difficulty of issuing reliable weather forecasts beyond a
horizon of a few days, as well as by earthquakes, floods and other
extreme geological and environmental phenomena. Human systems,
such as traders in stock markets influencing both each other and the
market itself, are also confronted to unexpected crises and collapses,
despite the rationality supposed to prevail at the individual level.

If the effects generated by the underlying causes were related to these causes by a
simple proportionality there would be no place for multiplicity. Nonlinearity is
thus a necessary condition for complexity.

In addition to its macroscopic-level manifestations, complexity is also ubi-
quitous at the microscopic level. Systems with built-in disorder, such as glassy
materials, give rise to a rich variety of evolutionary processes driven by
microscopic-level interactions. Many systems operating at the nanometre scale
exhibit complex behaviours such as energy transduction and anomalous trans-
port, arising from the interplay between microscopically generated spontaneous
fluctuations and systematic environmental constraints. The very origin of irre-
versibility is related to the intrinsic complexity of the dynamics of the atoms
constituting a macroscopic system under the effect of their mutual interactions.5

Complex systems lie at the crossroads of the deterministic and
probabilistic views of nature

As alluded to already in the preceding section, nonlinear dynamics provides a
natural setting for a systematic description of key properties of complex systems
and for sorting out generic evolution scenarios.1 In most situations of interest,
nonlinearity coexists with constraints, a set of actions reflecting the influence of
the environment on the system of interest and manifested at the level of the
evolution laws through the presence of a set of control parameters. As the
constraint is gradually applied, several qualitatively different regimes are gen-
erated. To these regimes correspond well-defined mathematical objects, the
attractors, each of which is reached irreversibly from a set of initial states that is
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specific to it, referred to as a basin of attraction. The evolutionary landscape is
thus partitioned into cells in which different destinies are realized, and yet this is
not in any sort of contradiction with the deterministic character of the underlying
evolution laws. The nature, number and accessibility of the attractors can be
modified by varying the constraints. These variations are marked by critical
situations where the evolutionary landscape changes in a qualitative manner as
new kinds of behaviour are suddenly born beyond a threshold value of the
constraint, notably through the mechanisms of instability and of bifurcation.
Criticalities and bifurcations confer to the system the possibility to choose, to
adapt and to keep the memory of past events since different pathways can be
followed under identical ambient conditions, as illustrated in Figure 1. Systems
close to criticalities also display an enhanced sensitivity to the parameters and to
the initial conditions, since minute differences in their values will generate
evolutions towards different regimes. As a rule there is no universal, exhaustive
classification of all possible evolution scenarios: the evolution of complex systems

Figure 1. The acquisition of historical dimension as a result of the phenomenon
of bifurcation, illustrated here on the example of the Rayleigh-Bénard
convection. Left panel: beyond the instability point the system must choose
between two new solutions b1, b2 that become available (two different
directions of rotation in the case of a Rayleigh–Bénard convection cell). The
upper smooth line depicts a particular evolution pathway. Right panel:
mechanical analogue of the process, where a ball rolling in the indicated
landscape may end up in valley b1 or valley b2 beyond the bifurcation point lc
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is an open-ended process that remains, nevertheless, compatible with the causal
and deterministic character of the laws of nature.

Among the regimes that can be realized by nonlinear systems the regime of
deterministic chaos is of special interest, as robustness and sensitivity are here in
permanent coexistence: while the attractor descriptive of chaos is re-established
once perturbed, initially nearby states on the attractor diverge subsequently in an
exponential fashion. This sensitivity to the initial conditions highlights further the
issue of predictability of certain phenomena associated with complex systems,
even if these are governed by deterministic laws. It also provides yet another
generic mechanism of evolution in which the future remains largely open.1,6

On the basis of the foregoing it appears that the conjunction of multiplicity and
sensitivity confers to complex systems an intrinsic randomness that cannot be fully
accounted for by the traditional deterministic description, in which one focuses on
the detailed point-wise evolution of individual trajectories. The probabilistic
description offers the natural alternative. The evolution of the relevant variables
takes here a form where the values featured in a macroscopic, coarse-grained
description are modulated by the random fluctuations generated by the dynamics
prevailing at a finer level. This accentuates further the variety of the behaviours
available and entails that the probability distribution functions, rather than the
variables themselves, become now the principal quantities of interest. They obey
evolution equations such as the master equation or the Fokker–Planck equation,
which are linear and guarantee (under mild conditions on the associated evolution
operators) uniqueness and stability, contrary to the deterministic description, which
is nonlinear and generates multiplicity and instability.

Thanks to its inherent linearity and stability, the probabilistic description of
complex systems is the starting point of a new approach to the problem of
prediction, in which emphasis is placed on the future occurrence of events
conditioned by the states prevailing at a certain time, as provided by experi-
mental data. This approach nowadays finds intensive use in operational weather
forecasting, where it is known as ‘ensemble forecasting’ (cf. Figure 2). Of great
interest is also the prediction of extreme events such as earthquakes or floods, of
the recurrence of states sharing certain characteristic features and of the crossing
of thresholds.1,7

Complex systems imply the emergence of levels of description
obeying their own laws

There is an apparent paradox accompanying the transition to complexity. On the
one hand complexity seems to follow its own rules, reflecting the emergence, at
some level of description, of new qualitative properties not amenable to those
of the individual subunits. But on the other hand, since the laws of nature are
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deterministic, these properties are bound to be deducible from the interactions
between lower order hierarchical levels.

A first case where this apparent conflict can be resolved, thereby allowing one
to establish a connection between different hierarchical levels, pertains to the
macroscopic description, in which individual variability and, more generally,
deviations from a globally averaged behaviour are discarded. Let {Xi}, i5 1,y,n
be a set of macroscopic observables, where n can be as large as desired, l is the
control parameter and Fi ({Xj}, l) are the laws governing the evolution:

dXi

dt
¼ FiðfXjg; lÞ ð1Þ

Suppose that the system operates in the vicinity of a criticality, in the sense
specified in the preceding section. An important result of nonlinear dynamics is
that for certain (generic) types of criticalities there exists a limited number of
collective variables, which one refers to as ‘order parameters’, obeying universal
evolution laws characteristic of the criticality at hand, which one refers to as
‘normal forms’. All other variables follow passively the evolution of the order
parameters.8,9 As an example, near the bifurcation depicted in Figure 1 – referred

Figure 2. Illustrating the nature of ensemble forecasts. The ellipsoids represent
three successive snapshots of an ensemble of nearby initial conditions (left) as
the forecasting time increases. The full line represents the traditional
deterministic single trajectory forecast, using the best initial state as obtained
by advanced techniques such as data assimilation. The dotted lines represent the
trajectories of other ensemble members, which remain close to each other for
intermediate times (middle ellipsoid) but subsequently split into two sub-
ensembles (right ellipsoid), suggesting that the deterministic forecast might be
unrepresentative
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to as pitchfork bifurcation – there exist just two order parameters (or a single
complex valued one z), obeying the universal equation

qz
qt
¼ ðl� lcÞz� ujzj2zþ Dr2z ð2Þ

where lc is the critical value of the control parameter l. The specific nature of the
original evolution laws (equation (1)) is immaterial as long as it gives rise to the
relevant bifurcation and enters only to specify the values of the parameters lc, u
and D in the normal form. We have here a first instance of how the concept of
emergence can be quantified, as a new level of description following its own
rules is being generated. Notice that the essential property sought here is closure,
namely the existence of an autonomous set of laws for the relevant variable
pertaining to the level of description considered.

Let us next switch to the probabilistic description afforded by master or
Fokker–Planck type equations, as discussed in the preceding section. Since a
probability distribution is specified by the infinite set of its moments, each of
these stochastic evolution equations is equivalent to an infinite hierarchy of
moment equations. Now, under well-defined conditions on the stochastic evo-
lution operators it can be shown that this hierarchy can be truncated to a finite
order and, in particular, to the first order in which the relevant variable is just the
observable appearing in the macroscopic description. In other words, under
certain conditions, the macroscopic description can be viewed as an emergent
property, starting from a probabilistic description.1

A most exciting point is that under certain (generic) conditions, the prob-
abilistic description itself acquires the status of an emergent property, free
of heuristic approximations, starting from a deterministic microscopic level
description. This passage from the Liouville equation to the master or Fokker–
Planck equations depends crucially on the unstable, chaotic character of the
microscopic dynamics. A second important ingredient is a judicious choice of
‘states’, through an adequate partition of the full phase space spanned by the
variables descriptive of the elementary subunits into cells. As the microscopic
trajectory unfolds in phase space (Figure 3) transitions between cells – states –
are induced, which are isomorphic to a probabilistic process. Such considerations
are also instrumental for building a microscopic theory of irreversibility.4,5

Despite the appealing character of the foregoing it should be realized that there
are limits to the hierarchical view, reflecting the failure of the decoupling
between levels of description. This is what happens, in particular, in nanoscale
systems, in systems subjected to strong geometric or non-equilibrium constraints,
or in phenomena associated with the occurrence of extreme values of the relevant
variables. A full scale description then becomes necessary, in which the fine
details of the structure of the probability distributions begin to matter. Universal
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laws governing some key observables can still be extracted, examples of which
are given by fluctuation type or, more generally, large deviation type theorems.10

Characterization of complex systems

The conjunction of the probabilistic and deterministic descriptions as well as of
the macroscopic and microscopic views opens the way to a multilevel approach
at the heart of present day complexity research as summarized briefly below.

(i) Scales, correlations, self-similarity. The most familiar characteriza-
tion of complex systems is in terms of correlations, a set of
quantities utilized extensively in statistical physics and in data

Figure 3. Coarse-grained description in terms of transitions between the cells
C1,y,n of a phase space partition, as the trajectory of the underlying
deterministic dynamical system unfolds in phase space
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analysis to describe, in an averaged way, how a system keeps in
time and space the memory of a perturbation inflicted initially on
one of its parts. As a rule, the onset of complex behaviours is
marked by the generation of long range correlations, which in some
extreme situations are scale free in the sense of displaying no
privileged characteristic time or space scale. The associated
probability distributions then display, in turn, power law tails.
These features are referred as self-similar, or fractal laws.11

(ii) Complexity, entropy and generalized dimensions. A probabilistic
process to which, as seen above, the evolution of a complex system
can be mapped under certain conditions can be characterized by a
hierarchy of entropy-like quantities, describing the amount of data
needed to identify a particular state of the system (Shannon entropy)
or a sequence thereof (block or dynamical entropies) with a prescribed
resolution.12 The Kolmogorov–Sinai entropy is the infinite resolution
limit of block entropies, and it characterizes the degree of dynamical
randomness of the system. Entropy-like quantities also generate a
hierarchy of dimension-like quantities, generally fractal, providing a
useful geometric characterization of complexity.

(iii) Complexity and information. The probabilistic description of
complex systems offers a representation in terms of sequences of
states that can be regarded as symbols, or letters of an alphabet (cf.
Figure 3). In this view, complex systems are regarded as sources
and processors of information. Symbolic sequences can be
characterized by the length of the minimal algorithm that allows
the observer to reconstitute them, referred to as algorithmic
complexity or Kolmogorov–Chaitin complexity.13 Fully random
sequences are the most complex ones in this perspective as reflected
by a linear scaling of their block entropies with the length of the
sequence, with a proportionality coefficient equal to the maximum
Shannon entropy. Natural complexity lies between full order and
full randomness adding, in a sense, a dynamic, ‘non-equilibrium’
dimension to the concept of algorithmic complexity. The scaling of
the associated block entropies is here more involved and contains,
in particular, sublinear contributions.

(iv) Simulating complex systems. Direct simulation of a process of
interest, rather than the integration of a set of underlying evolution
equations, is an indispensable element in the study of complex
systems. Starting from a minimal amount of initial information
deemed to be essential, different scenarios compatible with this
information are explored. Generic aspects of complex behaviours
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observed across a wide spectrum of fields (in many of which the
detailed structure of the constituting units and their interactions may
not be known to a degree of certainty comparable with that of a
physical law) are captured in this way through models governed by
simple local rules. In their computer implementation these models
provide attractive visualizations and deep insights, from Monte
Carlo and multi-agent simulations to cellular automata and games.14

Concluding remarks

We have seen that the evolution of complex systems is an open-ended process of
marked multiplicity, flexibility and diversity, thereby setting a prototype for
modelling evolutionary and regulatory processes in naturally occurring systems.
This approach provides new insights into, among other things, life sciences, in
which emphasis is placed on the need to complement the traditional molecular
biology based analysis by accounting for global, ‘holistic’ features not amenable
to molecular-level properties.15,16

Complex systems possess an irreducible random element, forcing a recon-
ceptualization of the concept of prediction and of the strategies to be followed in
order to monitor – or more generally to communicate with – a complex system.
This opens the way to a novel approach to meteorology, global climate and
environmental sciences, in general complementing the traditional approach based
on statistical data analysis and the integration of large numerical models often
comprising tens of millions of variables.1,7

Complex systems can be regarded as information sources and processors
capable of selecting within a finite time span, by means of the underlying
dynamics, sequences of states that would a priori be highly improbable. This
suggests the possibility of a ‘non-equilibrium’ extension of traditional informa-
tion and computation theories.1

Finally, complex systems provide a privileged interface between fundamental
mathematical and natural sciences on the one side and social sciences, finance
and management on the other.17 Here, the laws governing the evolution are not
known to any comparable degree of detail as in a physico-chemical system.
Still, many of the behaviours observed turn out to be part of the characteristic
phenomenology of complex systems as outlined in this article, the additional
distinctive feature being the intrinsic ability of the individual ‘actors’ to adapt and
to respond. One is thus often led to proceed by analogy, and this requires special
care in order to apply properly the methodology of complex systems approach
while respecting the specificities of the system at hand.

Complexity research has the privilege of attracting audiences of an unprece-
dented diversity. There is a need to establish adequate communication pathways
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between the different parts of this highly heterogeneous community, and this is
likely to necessitate training procedures of a new kind. At the same time, it is
essential to highlight further the status of complexity research as part of funda-
mental science and to keep investing in mathematically and physically motivated
issues and in the sharpening and further development of the associated techniques.
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