We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems:
$$ \begin{align*} \begin{cases} { d(-\Delta)^{s}u+ u= \vert u\vert^{p-1}u } & \text{in } \Omega, \\ {u>0} & \text{in } \Omega, \\ { \mathcal{N}_{s}u=0 } & \text{in } \mathbb{R}^{n}\setminus \overline{\Omega}, \end{cases} \end{align*} $$
where
$\Omega \subset \mathbb {R}^{n}$ is a bounded domain of class
$C^{1,1}$,
$1<p<({n+s})/({n-s}),\,n>\max \{1, 2s \}, 0<s<1, d>0$ and
$\mathcal {N}_{s}u$ is the nonlocal Neumann derivative. We show that for small
$d,$ the least energy solutions
$u_d$ of the above problem achieve an
$L^{\infty }$-bound independent of
$d.$ Using this together with suitable
$L^{r}$-estimates on
$u_d,$ we show that the least energy solution
$u_d$ achieves a maximum on the boundary of
$\Omega $ for d sufficiently small.