
Primary brain cancers are tumours that arise from malignant
transformation of cells of neuroectodermal lineages within the
central nervous system (CNS). These tumours are often
aggressive and difficult to treat. Primary brain tumours such as
gliomas often show extensive local invasion and distant
infiltration, making complete surgical resection difficult to
achieve. High-grade gliomas, encompassing both malignant
astrocytomas and oligodendrogliomas, often display resistance
to therapy in addition to aggressive biological growth1. The
lower grades gliomas may not always offer a better prognosis
because they are frequently surgically incurable and when given
enough time, will inevitably progress to high-grade tumours2,3.
Therefore, challenges in brain cancer treatments can be
attributed to a few factors. 1) The infiltrative nature of glioma
and intimate involvement of adjacent normal structures
precludes effective surgical resection of the tumour and limits
the extent and breadth of radiotherapy. 2) Normal brain
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parenchyma is sensitive to effects from radio- and chemotherapy
and has limited capacity to repair itself from damages. Thus far
there is still a lack of active therapeutic agents that effectively
cross the blood-brain-barrier (BBB) for brain cancer treatment.
In addition, drug resistance and disease relapse are common in
patients, rendering glioma one of the most lethal and aggressive
human malignancies4.
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Cancer Stem Cell Theory
The concept of “no-neuron dogma”, which implicates the

absence of brain stem cells in adulthood, was challenged in the
1960’s when the generation of new, functional brain cells was
described in the adult mammalian CNS5-7. In the late 1980’s,
Nottebohm’s group demonstrated the functional relevance of
adult neurogenesis in songbirds8,9. Subsequently, Reynolds and
Weiss reported the isolation of neural stem cells (NSCs) from
adult mouse brain10, followed by a series of in vitro experiments
which highlighted the presence of human NSCs in adult brain,
specifically in the dentate gyrus of the hippocampus11. The first
tantalizing evidence of the existence of NSCs in vivo in adult
human brain was described in 200112. The major implication of
these studies is the existence of mitotically active stem and
progenitor cells within discrete regions of the mature brain.
These long-lived cells have high potential in self-renewal and
proliferation, with time, hold the greatest opportunity of
accumulating genetic defects that transform normal cells
[reviewed by Vescovi et al.13, Al-Hajj et al.14].

The “cancer stem cell theory” proposes an hierarchical
organization in tumours in which only a specific subset of cells
can self-renew, proliferate extensively, establish and maintain a
tumour clone while the rest of the variably differentiated cells
cannot15, a concept differs from the traditional view of cancer
development. The clonal evolution theory, on the contrary,
indicates that all cells in a tumour have similar tumourigenic
potential that is activated asynchronously and at low frequency.
These cells acquire genetic mutations, each of which confers
additional proliferative and survival advantages. The malignant
progression towards a disease state proceeds in a manner that
resembles Darwinian evolution15.

Molecular Features of Cancer Stem Cells
The fact that brain tumours tend to recur after surgery may be

attributable to the diffuse and infiltrative nature of the tumours
and the presence of cancer stem cells (CSCs), which are also
known as tumour initiating cells (TICs). We realize that there
may be nuances in the definitions of CSCs and TICs; however,
these two terms will be used interchangeably in this review for
convenience.

The discovery of CSCs was first made by John Dick’s group
with the isolation of a small population of cells in acute myeloid
leukaemia (AML) that were capable of initiating leukaemia after
transplantation. These cells self-renewed, bore molecular
features of normal hematopoietic stem cells, and were named
“leukaemia initiating cells”16-18. This exciting result incited the
scientific community and a wealth of literature was subsequently
published to report the isolation of CSCs in breast19, skin20,
pancreas21, colon22, prostate23 and brain24-28. Cancer stem cells or
TICs are defined by the characteristics outlined by Vescovi and
colleagues13. First, CSCs must be able to self-renew extensively,
demonstrated either ex vivo by sequential clonogenic and
population kinetic analyses27,29 or in vivo by serial, orthotopic
transplantation25,27. Although transient amplifying progenitors
are highly proliferative, they show limited self-renewal and
cannot be propagated for an extended period of time. Equally
important, stem cells need to be able to generate progenies
several orders of magnitude more abundant than the starting

population30. Furthermore, the term “tumour initiating cells”
literally implicates the ability of these cells to instigate tumour
formation when implanted in animals. The resulting tumours
need to recapitulate the histopathological features of the parental
tumours. Cancer stem cells generate tumourigenic as well as
non-tumourigenic cells and they are capable of undergoing
multi-lineage differentiation, though the latter may not be an
absolute requirement for their identification. Unlike normal stem
cells, CSCs harbour karyotypic or genetic alterations in addition
to aberrant differentiation properties13.

Despite the phenotypic and functional similarities between
normal stem cells and CSCs, it is important to be aware of the
fundamental differences between these cells. While normal stem
cells are known for the vigilance with which their proliferation
is controlled and for the care with which their genomic integrity
is maintained, CSCs lack such properties31. The perennial nature
and high proliferative potential of stem cells has made it
tempting to speculate that CSCs may originate from malignant
transformation of normal stem cells, yet thus far the cell-of-
origin remains elusive. Studies have shown that genetic
alterations by way of tumour suppressor gene ablation or
oncogene activation increased the frequency of tumour
formation in primitive nestin-expressing cells but not in the more
differentiated glial fibrillary acidic protein (GFAP)-expressing
astrocytes32,33. However, conflicting experimental results
indicate that differentiated astrocytes and NSCs may be equally
permissive to transformation when key genetic alterations are
introduced. In particular, mature astrocytes and neural
progenitor cells with epidermal growth factor receptor (EGFR)
over-expression and p16Ink4a deficiency generate tumours at
similar frequencies and intriguingly, the combination of these
genetic lesions seem to “re-program” astrocytes and enable them
to acquire a “stem-like cell” phenotype34. Therefore,
experimental evidence has pointed to glioma development from
CSCs or from de-differentiation of mature cells within the
mature glial population.

Tumour Microenvironment and Brain Cancer Stem Cells
(BCSCs)

Brain tumours are formed by a mixed population of
cancerous and non-cancerous cells. It is now believed that the
non-malignant cells may not be innocent bystanders but
accomplices that actively contribute to brain tumour
development35,36. The tumour microenvironment, endogenous
stromal cells and infiltration, support the growth and
progression, even acting as part of the “soil” in facilitating the
establishment of distant metastases of a tumour.

In the case of CNS malignancies, for instance, tumour cells in
glioblastoma multiforme (GBM) can release vascular
endothelial growth factor (VEGF), angiopoietin-2 and other
factors into the circulation to recruit bone marrow progenitors
such as CD45+ myeloid cells to support angiogenesis37. Tumour-
infiltrating myeloid suppressor cells can mediate immuno-
suppression by inactivating dendritic cell maturation and anti-
tumour activities of natural killer cells38. Endothelial cells have
also been shown to promote BCSC proliferation and self-
renewal in vascular niche. Increased endothelial cell number in
brain tumour xenografts expanded BCSC population and
accelerated disease progression39. Brain cancer stem cells may
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also create their own tumour-specific niche and engage
angiogenesis by secreting VEGF40. Bevacizumab, an inhibitor of
VEGF-A, suppresses angiogenesis and BCSCs growth in
vivo41,42. Bevacizumab has been part of the treatment regimens
for malignant glioma. However, concerns have been raised
around its potential to trigger infiltrative tumour growth,
resulting in an aggressive disease that is difficult to manage43,44.
Studies are currently underway to examine the combination of
anti-angiogenic therapy with anti-invasion therapy such as
cilengitide, an integrin inhibitor, in the hope of delaying disease
progression38. Thus far, no single molecular-targeted agent has
been proven effective and used in clinical setting for brain cancer
treatment [reviewed by Van Meir et al.38]. Effective management
of malignant glioma will likely rely on combinatorial targeting of
different pathways to improve cure rate and efficacy.

The Identification and Isolation of BCSCs
Neurosphere Assay

The evidence of the existence of stem-like cells in brain
cancer was first reported by Steindler and colleagues who
obtained sphere-forming cells from post-operative GBM
specimens45. Subsequently, Hemmati et al. and Galli et al. grew
primary tumour cells isolated from patient specimens in
neurosphere assay with conditions permissive for neural stem
cell growth.26,27 The tumour spheres formed expressed NSC
markers such as musashi (MSI1), BMI1 and SOX2 and were
capable of aberrant multi-lineage differentiation28. In addition,
the cells dissociated from the spheres were tumorigenic in
animals and formed highly infiltrative lesions characteristic of
GBM26,27.

In neurosphere assays, cells dissociated from primary brain
tumour specimens were plated in neurobasal medium
supplemented with epidermal growth factor (EGF) and basic
fibroblast growth factor (b-FGF). The variably differentiated
cells cannot survive and therefore only neural stem and
progenitor cells can proliferate clonally to form free-floating,
phase-bright spheres in liquid culture. Tumourspheres can be
serially passaged and cells from the spheres can be induced to
undergo lineage differentiation upon growth factor withdrawal or
addition of serum10. It should be noted that there is no one-to-one
relationship between neurospheres and NSCs. Estimating stem
cell frequency based on sphere forming frequency in the
neurosphere assay provides an invalid readout30. In other words,
sphere-forming frequency approximates progenitor cell activity
more closely than stem cell activity. Most of the spheres in this
assay are likely derived from progenitor cells but not stem cells,
therefore serial passaging is crucial to the enrichment of NSC
population30,46.

Cell Surface Antigen Sorting by CD133 (Prominin 1, PROM1)
In the study of Singh et al., brain tumour initiating cells

(BTICs) were enriched by the cell sorting paradigm based on the
expression of CD133 (prominin 1), a cell surface glycoprotein.
The CD133+ cells exhibited molecular characteristics of NSCs in
vitro and were much more tumourigenic than the CD133- cells
with only 100 CD133+ cells required to form tumours that are
phenocopies of the parental tumours in immunocompromised
mice. On the contrary, 105 CD133- cells engrafted but did not

produce tumours25.
CD133+ cells have subsequently been found to be resistant to

chemo- and radiation therapies. CD133+ cell population was
enriched in tumours from relapsed patients compared to their
initial diagnosis47. Transcript levels of drug resistant proteins
such as breast cancer resistant proteins (BCRP), O6-methyl
guanine DNA methyl transferase (MGMT) and anti-apoptotic
proteins: BCL-2, BCL-xL, MCL-1, and the inhibitor of
apoptosis protein (IAP) family are elevated in CD133+ cells
which were notably resistant to carboplatin, etoposide, paclitaxel
and temozolomide47. CD133+ cells survive radiotherapy by
preferentially activating DNA repair pathway and radio-
resistance could be reversed by treatment with CHK1/2
inhibitors48.

Recent studies suggest that CD133- cells may also be
tumourigenic and that CD133+ and CD133- cells may represent
CSCs from distinct cells-of-origin. While CD133+ cells resemble
fetal NSCs, display proneural signature genes and grow as
neurospheres, CD133- cells resemble adult NSCs, show
mesenchymal transcriptional profile and grow semi-
adherently49,50. Interestingly, CD133low GBM (having ≤ 3%
CD133+ cells in the tumour) showed more invasive, proliferative
and angiogenic growth than CD133high tumours (having ≥ 3%
CD133+ cells in the tumour)51. CD133- cells are capable of
initiating tumour formation and giving rise to tumours that
contained CD133+ cells. Interestingly, in vivo passaging of these
tumours led to up-regulation of CD133 expression52.

Despite the uncertainties in the robustness of CD133 as a
marker for BCSC identification, experimental evidence has
nevertheless lent strong support to the clinical importance of this
subset of cells. The presence of >2% CD133+ cells with high
Ki67 labelling is an independent prognostic marker of poor
survival in GBM patients53 and the co-expression of nestin and
CD133 independently predicts poor clinical outcome of glioma
patients54.

Cell Surface Antigen Sorting by CD15 (Lewis x, Stage-Specific
Embryonic Antigen 1, SSEA-1)

In addition to CD133, another cell surface antigen, CD15
(SSEA-1), has recently been studied in the isolation of BCSCs.
CD15 is a carbohydrate epitope expressed on normal
neutrophils55, stem and progenitor cells in the adult/embryonic
nervous system56-58 as well as cells from various solid
tumours59,60. CD15 cell sorting enriched for proliferative and
tumourigenic cells in vitro and vivo in GBM and
medulloblastoma61-63. However, the fact that CD15 was also
expressed in a subset of granular neuronal progenitors (GNPs)
may argue against it being a marker exclusive to NSCs.
Furthermore, in the study of Read et al., CD15+ cells did not
form neurospheres and showed no evidence of multi-lineage
differentiation despite being capable of medulloblastoma tumour
formation in animals. Therefore, CD15+ cells might be
progenitor-like cells with a unique capacity for tumour
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propagation63.
Other Methods Used for the Enrichment of BCSCs
Hoechst 33342 Exclusion- Side Population (SP) Cells

Stem cells and CSCs express elevated levels of multi-
functional drug efflux proteins such as the adenosine
triphosphate binding-cassette (ABC) transporters on their cell
surface. These cells may thus be protected from certain
chemotherapeutic agents by “pumping out” drugs from cells64-68.
Interestingly, Hoechst 33342, a fluorescent DNA binding dye, is
also one of the substrates of ABC drug efflux proteins. The
unique biological property of stem cells and CSCs in extruding
chemotherapeutic agents as well as Hoechst 33342 is exploited
for the isolation of this sub-population of cells. In this dye
exclusion assay, the cells are stained with Hoechst 33342 and
subjected to flow cytometry. Stem cells and CSCs, due to their
enhanced capacity in effluxing the dye, will show low Hoechst
staining intensity that segregates these cells from the majority of
the Hoechst-stained cells (express lower levels of drug efflux
proteins) on a flow cytometry dot plot. These Hoechst-effluxing
cells are also known as “side-population” (SP) cells69-75. This
technique has been used to successfully identify CSCs in brain
cancers76; however it does not provide a pure population of
CSCs as normal stem cells are also included and CSCs may not
always be in the side population. In addition, the SP cells may
contain differentiated, non stem-like cells that are counted as part
of the SP merely because of their elevated expression of drug
efflux proteins77.

Aldehyde Dehydrogenase Activity Assay
Aldehyde dehydrogenases are a group of enzymes that

catalyze the oxidation of aldehydes. In 1996, Storms et al
demonstrated the isolation of hematopoietic progenitor cells on
the basis of aldehyde dehydrogenase (ALDH) activity. In the
assay they developed, a fluorescent substrate for ALDH, named
BODIPY aminoacetaldehyde (BAAA), was examined for its
potential for isolating primitive hematopoietic cells. Results
indicate that a subset of cells with low orthogonal light scattering
and bright fluorescent intensity [SSCloALDHbr] are enriched for
hematopoietic progenitor cells78. Subsequently, the identification
of putative NSCs in the central nervous system was reported by
Corti et al. who showed that SSCloALDHbr cells obtained from
murine adult and embryonic neurospheres cells were capable of
self-renewal and multi-potent differentiation in vitro and vivo79.
The enhanced functional activity of ALDH was not only
observed in the progenitor cells in the hematopoietic and central
nervous system,80-82 but also in human malignancies such as
cancers of the lung83,84, breast85, colon86, liver87, brain88,89, and
head and neck squamous cells.90 It was also associated with
disease progression91, metastasis92-94 and poor clinical
outcome93,95-98. Together, these results indicate the clinical
importance of ALDH-high cells in the pathogenesis of cancers.

Other novel CSC isolation methods include a marker-
independent identification of glioma-initiating cells (GICs). This
technique takes advantage of the autofluorescence properties of
GICs that emit light at ~520nm upon laser excitation at 488nm.
These GICs can therefore be detected by flow cytometry in FL1
channel without the need for cell surface markers99.

It is likely that a combination of cell surface markers and

other techniques will be required to purify CSCs as elegantly
exemplified in the hematopoietic system, though challenges
arise because of minimal overlap in cell population isolated
using different cell surface markers19,100,101. Moreover, the fact
that brain cancer is a complex disease in which a heterogeneous
population of cells contribute to disease progression would
refute the idea of targeting solely the CSC population for
effective treatments35. The study of CSCs is insightful from the
scientific standpoint, yet the most effective therapeutic strategy
against brain tumours would likely involve targeting most, if not
all, cells in a tumour as well as stromal components in the
tumour microenvironment.

The “Flipside” of the Story- Debates Around the CSC
Theory
CSCs and Aberrant Differentiation

The field of CSC has been an area of intense study. However,
as with many other scientific theories, it is not devoid of
controversies. A review by Shackleton compares the cancer stem
cell theory and the clonal evolution theory102. Epigenetic
controls are thought to govern the process of differentiation. As
such, one could envisage a bias towards a particular epigenetic
program that favours an undifferentiated state during the
development of CSCs. These epigenetic controls may also be
largely reversible such that the majority of the cells in a tumour
loses their tumourigenic capacity102. Though scientifically
sound, thus far there is still a dearth of evidence suggesting that
tumourigenic and non-tumourigenic cells are distinguished
mainly by epigenetic rather than genetic differences102.
Furthermore, heterogeneity of cells in tumours is believed to be
a result of hierarchical organization established by CSCs, a
conclusion drawn from analyses of tumours using only a limited
number of cell surface markers that characterize major cell
types. It is not known if there is additional genetic heterogeneity
that is not captured in these studies102. Therefore, tumour
heterogeneity may in fact, be partly attributed to genetic
diversity of cells in tumours as suggested by the clonal evolution
theory.

Controversies of Animal Models
In CSC studies, the use of more immunocompromised mice

results in fewer cells being required for tumour formation17,103-
105. This is exquisitely demonstrated by Quintana et al. that far
less cells were required to form detectable melanoma when more
highly immunocompromised NOD/SCID mice (IL2γ-null) were
used105. However, even this experimental system could still
under-estimate the number of human tumour cells that are
capable of forming tumours when given suitable conditions102.
Animal models provide valuable information but the differences
between mouse and human brain parenchyma more or less limits
the extent to which we could interpret the data. The degree of
vascularization at sites of tumour cell injections, differences
between mouse and human extracellular matrix environment,
growth factor requirements for human tumour cells to survive
and form tumours in animals, sites of tumour cell implantation
(orthotopic or heterotopic) and host immune status are all critical
factors that determine the success of engraftment102,106.

The use of transgenic mouse models may help circumvent the
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problem of host-cell compatibility. Transgenic mouse models of
medulloblastoma have been developed in which key genetic
mutations in the sonic hedgehog pathway are introduced to
evoke in situ tumour formation. For example, in the study by
Weschler-Reya’s group, transgenic mouse model with Patched
(Ptch) mutation was generated to study medulloblastoma in
mouse brain and CD15 was identified as a marker that
consistently enriches for tumour initiating cells63. In addition,
Smo/Smo transgenic mice were created by Olson’s group by
expressing a constitutively activated form of the Smoothened
gene (SmoA1) within cerebellar granule neuron precursors
through the regulation of the neuroD2 (ND2) promoter. The
Smo/Smo mice exhibit high incidence and early onset of
medulloblastoma tumours ideal for preclinical studies107.

The Functions and Presence of CSCs may be Context-
Dependent

The CSC theory proposes that the majority of cells in a
tumour lose tumourigenic potential during the process of
differentiation. However, the loss of tumourigenicity may not
always be due to hierarchical organization but rather a
preordained lethal cell fate resulting from the deleterious genetic
mutations that tumour cells harbour102. Furthermore, the CSC
theory addresses the “potential” of cancer cells to contribute to
disease but not the actual “fate” of cells in patients. The fact that
CSCs have higher potential forming tumours does not mean they
actually do so in patients because tumour cells may be held in
check temporarily or permanently by constraints from tumour
microenvironment and/or host immunity102. On the other hand,
non-CSCs may become tumourigenic when given the
appropriate conditions, as suggested by the “interconversion
model”31 which hypothesizes that cancer cells can interconvert
between more or less malignant/proliferative states depending on
the contextual signals received. Therefore, a dynamic
equilibrium may exist in the conversion of CSCs to non-CSCs
and vice versa, in a process controlled by the tissue
microenvironment106.

Notwithstanding the ongoing debates of CSC and clonal
evolution theories, cancer is both a proliferation and
differentiation disease and these two theories may not be
mutually exclusive108. Recently, it has become increasingly
accepted that the CSC hypothesis may not contradict the clonal
evolution view of cancer, but instead suggests a key role for
malignant cell hierarchy in tumour evolution and emphasizes the
importance of aberrant differentiation programs in tumour-
igenesis. Tumour heterogeneity could therefore be contributed
by genetic instability of cancer cells, as suggested by the clonal
evolution theory, as well as by aberrant differentiation, as
proposed by the CSC theory108.

Aberrant Signaling in CSCs and the Pathogenesis of Brain
Cancers

It is now widely hypothesized that CSCs may arise from
defects in lineage differentiation. Mutations seem to enable
CSCs to “hijack” certain signalling pathways that are
endogenous to normal stem cells. Indeed, aberrant activation in
the Notch, hedgehog (HH) and WNT pathways, which are
instrumental to the homeostasis of normal stem cells, are

implicated in the development of brain cancers109-117. Cancer
stem cells are believed to arise from undifferentiated or poorly
differentiated cells that show enhanced self-renewal and thus
limited differentiation, and as such, appear to be “trapped” in a
perpetual state of cell proliferation. These progenitor cells may
further acquire genetic mutations that subsequently facilitate
malignant transformation77.

Notch Pathway
There are four mammalian Notch proteins (Notch 1-4)118-122

that bind their ligands: Delta-like-1, -3, and -4 (DLL1, DDL3
and DLL4)123-125 and Jagged 1 and Jagged 2 (JAG1 and
JAG2)126,127. The signaling is initiated by a ligand-receptor
interaction between two adjacent cells, followed by two
sequential cleavages of Notch, the receptor. The second cleavage
liberates the cytoplasmic domain of the receptor, Notch
intracellular domain (NICD), which subsequently translocates
into the nucleus and binds to transcription factor CSL, leading to
transcriptional activation of downstream target genes [reviewed
by Radtke et al128].

Notch signaling positively regulates self-renewal of NSCs129.
Notch pathway activation is not only essential to the
maintenance of NSCs but also patient-derived BCSCs130. Notch
signaling enhances nestin expression and may therefore have a
contributing role in the stem-like characteristic of glioma
cells131. Over-expression of Notch receptors and their ligands
Delta-like 1 (DLK1) and Jagged 1 (JAG1) correlates with
proliferative capacity of human glioma cells111. Inhibition of the
pathway by RNA interference or γ-secretase inhibitor provides
proof-of-concept of the potential in targeting Notch pathway for
brain cancer treatment. A γ-secretase inhibitor, MK-0752
(www.merck.com), is currently evaluated in phase I clinical trial
for treatment of T-ALL and advanced/metastatic breast
cancers108. Pharmacological inactivation of the Notch pathway
led to cell cycle exit, apoptosis and differentiation of
medulloblastoma cell lines as well as depletion of the CD133+,
stem-like cells113, a result subsequently confirmed in GBM132,133.
The therapeutic window for γ-secretase inhibitor is narrow due
to its broad effects on multiple Notch signaling pathways and
normal stem cells108. As a result, optimal dosing regimen will be
required to avoid undesirable toxicity in normal stem cells. A
recent study by Schreck et al suggests that a compensatory
signaling via the WNT and hedgehog pathways may play a role
in therapeutic resistance against Notch inhibitors. Simultaneous
targeting of Notch and hedgehog pathways enhanced apoptosis
and growth suppression compared to monotherapy134.

Sonic Hedgehog (sHH) Pathway and BMI1
The sonic hedgehog pathway (sHH) pathway is initiated by

binding of sHH (the ligand) to Patched (PTCH, the receptor). In
the absence of pathway activation, PTCH exerts a negative
regulatory control on Smoothened (SMO), a transmembrane
protein. Upon ligand binding, the repression of SMO by PTCH
is relieved and SMO can relay the signaling to downstream
components of the sHH pathway. Glioma-associated oncogene
(GLI), a downstream target of SMO, is released from the
multiprotein complex formed by itself, Fused (FU) and
suppressor of fused (SUFU) and enters the nucleus where it
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functions as a transcription factor to regulate the expression of
growth/angiogenesis-promoting genes such as cyclin D, cyclin
E135,136 and components of the EGFR, platelet-derived growth
factor (PDGF) and VEGF pathways [reviewed by Di Magliano
et al.137].

The secreted protein “sonic hedgehog” (sHH) and its
downstream effectors glioma-associated oncogene homologue 1
(GLI1, GLI2 and GLI3) regulate neurogenesis and self-renewal
within the external granular layer of the early postnatal
cerebellum and control precursor cell proliferation in the adult
sub-granular zone138. In brain cancer pathogenesis, sHH pathway
modulates BCSC proliferation139 and synergizes with the
insulin-like growth factor (IGF) pathway in inducing the
formation of medulloblastoma in nestin-expressing progenitor
cells in mice140.

Medulloblastoma, a disease that may be caused by aberrant
self-renewal of neuronal progenitor cells in the external granular
layer of the cerebellum, often (10-20%) show mutations in
PTCH1, SUFU or Smoothened (SMO) which are components of
the sHH pathway141-144. Molecular profiling of medulloblastoma
classifies the disease into five different subtypes. Class B
medulloblastoma is characterized by inactivating mutations of
PTCH1 or SUFU, the negative regulators of the sonic hedgehog
pathways145,146. Results from these molecular profiling studies
are highly predictive of patient outcome and may facilitate the
development of subclass-specific, patient-tailored therapies.

One of the earliest studies in sHH pathway inhibitors was
done by Berman et al. who demonstrated the efficacy of a SMO
inhibitor, cyclopamine, in blocking medulloblastoma cell growth
in vitro and inducing differentiation. Moreover, drug treatment
resulted in a concomitant loss of “stem-like” characteristics in
the neural progenitor cells and led to tumour regression in
vivo116. Inhibition of the sHH pathway for cancer treatment is an
area that has been actively pursued in the pharmaceutical
industry. Cyclopamine, the first-in-class sHH pathway inhibitor,
has been used for target validation147 in pre-clinical studies in
solid tumours and is also evaluated for its efficacy in basal cell
carcinoma in phase I clinical trial148. GDC-0449, another SMO
antagonist, is currently being assessed in phase II clinical trials
for the treatment of basal cell carcinoma and metastatic
colorectal cancer (Genentech, www.gene.com). IPI-926, a sHH
pathway inhibitor, has been evaluated for the treatment of
advanced/metastatic solid tumours in phase I clinical trials
(Infinity Pharmaceuticals, www.ipi.com) [reviewed by Zhou et
al.108].

Recent studies suggest that BMI1 is a key protein required for
the hedgehog pathway-driven tumourigenesis149 and is
significantly up-regulated in human medulloblastoma150. BMI1,
a member of the polycomb group of proteins, enhances cell
proliferation and self-renewal of NSCs partly through the
repression of tumour suppressor genes p16INK4a and p19ARF151,152.
BMI1 and other polycomb group (PcG) proteins form a multi-
protein complex, PRC1 (polycomb repressive complex 1) that
epigenetically silences gene expression153-157. The recruitment of
BMI1 to gene promoters is mediated by a number of
transcription factors collectively known as “cell fate
transcription factors” (CFTFs) for their role in regulating cell
fate decision during embryogenesis and differentiation of adult
stem cells158. Abnormal expression or activity of CFTFs may

recruit BMI1 to promoters of genes that encode proteins
involved in differentiation. BMI1 and other proteins in PRC1
may cooperatively silence the expression of genes that are
required to promote differentiation. As a consequence, cells may
be “locked” in a state of relentless self-renewal.

WNT Pathway
Another major self-renewal pathway implicated in brain

cancer pathogenesis is the WNT/β-catenin pathway that controls
adult neurogenesis159-162. This pathway is activated when
wingless-type MMTV integration site family (WNT), the
secreted ligand, binds to the cell surface receptors of the
“Frizzled” (FRZ) family, leading to the activation of Dishevelled
(DVL) and subsequent inhibition163 of the multi-protein
complex: axin/adenomatous polyposis (APC)/GSK3β that
normally leads to the degradation of β-catenin. When the WNT
pathway is “on”, the axin/APC/GSK3β complex is inhibited. As
a result, β-catenin accumulates and enters the nucleus to function
cooperatively with TCF/LEF transcription factors in promoting
the expression of specific genes [reviewed by Logan et al.164].

Molecular profiling classifies medulloblastoma into distinct
subgroups with unique gene signatures. Class A medullo-
blastoma (WNT subtype) harbours mutations in CTNNB1, the
gene that encodes β-catenin. Medulloblastoma is believed to
arise within the cerebellum, with approximately 25% of the
tumours (sHH subtype) originating from the granule neuron
precursor cells (GNPCs) due to aberrant sHH signalling145,146.
However, Gibson et al. recently showed that the WNT subtype
of medulloblastoma arose outside of the cerebellum from cells in
the dorsal brainstem, suggesting that different subtypes of
medulloblastoma may have different cells-of-origin165. A clinical
study conducted by the U.K. Children’s Cancer Study Group
Brain Tumour Committee enrolled 109 medulloblastoma
patients to examine the relationship between β-catenin
expression in tumours and patient survival. Curiously, the results
indicated that nuclear accumulation of β-catenin was a marker of
favourable outcome in medulloblastoma. Children with tumours
that stained positive for nuclear β-catenin (27 of 109, 25%)
showed better overall and event-free survival166, a result
subsequently confirmed by Rogers et al.167.

Deregulation of the WNT pathway is observed in a subset of
medulloblastoma145,146,165,168-171. Somatic mutations in APC,
GSK3b and CTNNB1 were identified in primitive neuro-
ectodermal tumours (PNETs)172. Deletion173 or mutation of
AXIN1168, a negative regulator of the WNT pathway, was
reported in medulloblastomas. Overexpression of the
components of the pathway, such as Dishevelled and β-catenin
was also reported in human astrocytomas174. Together these
results suggest that activating mutations of the components of
the WNT pathway may contribute to the pathogenesis of PNETs
and astrocytomas.

Therapeutic strategies targeting the WNT pathway have been
investigated for the treatment of brain cancers. For example,
small molecule inhibitor OSU03012 which targets PDK1, a
protein in the PI3K/AKT pathway, was shown to inhibit WNT
signalling by sequestering β-catenin in the cytoplasm.
Furthermore, OSU03012 functioned synergistically with
chemotherapeutic agents in inducing apoptosis in
medulloblastoma cell lines and demonstrated anti-tumour effects
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in vivo175. In human glioma cells, the introduction of hDKK-1
(human DKK1), a gene that encodes a negative regulator of the
WNT pathway, sensitized brain tumour cells to chemo-
therapeutic agents that causes DNA alkylation176.

In addition to the aforementioned developmental signaling
pathways, interestingly, concomitant deletion of tumour
suppressor proteins PTEN and p53 also promotes an
undifferentiated state of cells with high self-renewal potential
and elevated MYC expression177. Further analyses revealed a
key role of MYC up-regulation in sustaining the stem-like state
of cancer cells177, which can be reversed by MYC knock-
down178.

Therapeutic Strategies Targeting BCSCs
Targeting Key Signaling Pathways with Small Molecule
Inhibitors

Cancer is a disease of abnormal differentiation and if CSCs is
indeed the root of disease recurrence, it would be reasonable to
target aberrant self-renewal pathways in the treatment of brain
cancers. Cyclopamine, an inhibitor of smoothened (SMO),
provides a nice proof-of-principle of the effectiveness of
targeting sHH pathway in the treatment of medullo-
blastoma116,179. GDC-0449 and LDE-225 are examples of
hedgehog pathway inhibitors that are currently being evaluated
in phase I/II clinical trials in solid tumours and medulloblastoma
respectively180-182. However, treatment efficacy can be hampered
by drug resistance developed as a result of activating mutations
in the serpentine receptor Smoothened (SMO) or chromosomal
amplification of GLI2 in the pathway183,184. Research is
underway to examine resistant mechanisms in these hedgehog
inhibitor-refractory diseases. In one study, analyses of gene
expression signatures indicated a role of the PI3K pathway in
mediating drug resistance in medulloblastoma. The
combinatorial treatment of PI3K inhibitor NVP-BKM120 or the
dual PI3K/mTOR (mammalian target of rapamycin) inhibitor
NVP-BEZ235 with SMO antagonist markedly delayed the
development of drug resistance185. In another study,
simultaneous inhibition of the Notch and sHH pathways
eliminated GBM-derived cells much more effectively than
monotherapy did134. Rational drug combinations targeting
multiple developmental pathways may thus offer more
significant benefit. Resveratrol is an inhibitor of the WNT
pathway; a recent study by Yang et al. demonstrated the efficacy
of resveratrol in suppressing tumourigenicity and enhanced
radiosensitivity of primary GBM TICs by inhibiting the STAT3
signaling axis186.

Differentiation Therapy
Aggressive brain tumours often include a large proportion of

immature, primitive cells that appear to be permanently “locked”
in a state of de-differentiation, which causes them to proliferate
uncontrollably. An alternative therapeutic strategy is therefore to
promote differentiation of these CSCs. By treating GBM CSCs
with bone morphogenetic protein 4 (BMP4), Piccirillo et al. were
able to decrease proliferation and induce differentiation of CSCs
in vitro. BMP4 treatment increased tumour latency and
prolonged animal survival. In vivo serial passaging was
unachievable due to the depletion of CSCs by BMP4187.

Consistent with this, BMP7 released from endogenous neural
precursor cells can act as paracrine tumour suppressors to inhibit
proliferation, self-renewal and tumour-initiation of stem-like
GBM cells188. However, if BMP were to be used in clinical
setting, it would be important to consider the status of BMP
receptor status in patients. Lee et al. noticed that a subset of
GBM patients were refractory to BMP4 treatment and curiously
showed a paradoxical increase in tumour cell proliferation.
These BMP4-resistant cells were subsequently found to express
low levels of BMP receptor 1B as a result of epigenetic silencing
and could be re-sensitized to BMP4-induced differentiation by
ectopic restoration of BMP receptor189.

Our laboratory has studied the role of a transcription factor
named Y-box binding protein 1 (YB-1) in brain cancers. Knock-
down of YB-1 by siRNA not only decreased cell proliferation,
clonogenicity and invasion in vitro but also delayed the onset of
tumour formation in vivo. Moreover, YB-1 knock-down
enhanced the apoptotic effect of temozolomide (TMZ) in adult
and pediatric GBM190. Further investigation revealed that YB-1
is a critical factor regulating the differentiation of NSCs. YB-1
expression is high in normal NSCs and dramatically decreases
when the cells undergo lineage differentiation. In GBM tumours
where cells do not undergo normal process of differentiation, the
expression of YB-1 is elevated, corresponding to a higher level
of cellular proliferation as evidenced by Ki67 staining. Knock-
down of YB-1 suppressed the expression of stem cell markers
SOX2, musashi and BMI1 and intriguingly, forced GBM brain
cancer cells to acquire a more differentiated, astrocytic
morphology, accompanied by increased expression of
differentiation marker, GFAP191. Although thus far there is a lack
of small molecule inhibitor targeting YB-1, we have developed
in house YB-1 cell permeable peptides that eliminate breast
cancer cells. Research is underway to determine if the peptides
are equally effective in brain cancer cells.

Eliminating CSCs by Oncolytic Viruses
Additional methods have been designed to target CSCs. With

the use of oncolytic herpes simplex virus (oHSV), Wakimoto et
al. were able to inhibit self-renewal and killed GBM-derived
CSCs in vitro/vivo192. A recent study on novel virus-gene therapy
involved oncolytic virus carrying exogenous endostatin-
angiostatin fusion gene (vae) which not only infected and killed
glioma stem cells but also inhibited the proliferation of human
brain microvascular endothelial cells in the CSC niche193. The
combination of oHSV and PI3K/AKT inhibitors synergistically
induced apoptosis of GBM CSCs but not human astrocytes and
prolonged the survival of animals. This therapeutic strategy
might also effectively target medulloblastoma CSCs that reside
in the perivascular niche and exhibit radio-resistance due to
enhanced PI3K/AKT signaling194. In another study, Seneca
Valley Virus-001 (SVV-001) administered systemically passed
the blood-brain-barrier (BBB) and killed the primary xenograft
medulloblastoma cells, infected the CD133+ cells and eliminated
tumour cells capable of neurosphere formation.

CONCLUSION
Brain cancer stem cells appear to be a Janus-faced entity-

looking into the past and future of a perverted path of cell
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development and encompassing characteristics of both. Ongoing
research into its developmental intricacies and molecular
signatures will no doubt help to unravel the biological
underpinnings of these cells in brain cancer. Ultimately, it will
lead to the development of precise diagnostic tools and more
efficacious, targeted therapeutic agents.
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